{"title":"Improving golden jackel optimization algorithm: An application of chemical data classification","authors":"Aiedh Mrisi Alharthi , Dler Hussein Kadir , Abdo Mohammed Al-Fakih , Zakariya Yahya Algamal , Niam Abdulmunim Al-Thanoon , Maimoonah Khalid Qasim","doi":"10.1016/j.chemolab.2024.105149","DOIUrl":null,"url":null,"abstract":"<div><p>One of the main issues affecting the effectiveness of the quantitative structure-activity relationship (QSAR) classification techniques in chemometrics is high dimensionality. Applying feature selection is a critical procedure that determines the most relevant and important aspects of a dataset. It improves the effectiveness and accuracy of prediction models by effectively lowering the number of features. This decrease increases classification accuracy, reduces computing strain, and improves overall performance. Recently, the golden jackal optimization (GJO) algorithm was introduced, which has been successfully used to solve various continuous optimization issues. Therefore, this study proposes an improvement in the GJO algorithm employing chaotic maps, abbreviated as CGJO, to enhance the exploration and exploitation capability of the GJO algorithm in picking the essential descriptors in QSAR classification models with high classification accuracy and less computation time. Experimental findings based on four different high-dimensional chemical datasets show that the proposed CGJO algorithm can maximize classification accuracy while simultaneously decreasing the number of chosen descriptors and lowering the time required for computing. Thus, the proposed algorithm can be useful for chemical data classification in other QSAR modeling.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"250 ","pages":"Article 105149"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924000893","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
One of the main issues affecting the effectiveness of the quantitative structure-activity relationship (QSAR) classification techniques in chemometrics is high dimensionality. Applying feature selection is a critical procedure that determines the most relevant and important aspects of a dataset. It improves the effectiveness and accuracy of prediction models by effectively lowering the number of features. This decrease increases classification accuracy, reduces computing strain, and improves overall performance. Recently, the golden jackal optimization (GJO) algorithm was introduced, which has been successfully used to solve various continuous optimization issues. Therefore, this study proposes an improvement in the GJO algorithm employing chaotic maps, abbreviated as CGJO, to enhance the exploration and exploitation capability of the GJO algorithm in picking the essential descriptors in QSAR classification models with high classification accuracy and less computation time. Experimental findings based on four different high-dimensional chemical datasets show that the proposed CGJO algorithm can maximize classification accuracy while simultaneously decreasing the number of chosen descriptors and lowering the time required for computing. Thus, the proposed algorithm can be useful for chemical data classification in other QSAR modeling.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.