{"title":"Near-real-time multiparametric seismic and visual monitoring of explosive activity at Sabancaya volcano, Peru","authors":"Riky Centeno , Valeria Gómez-Salcedo , Ivonne Lazarte , Javier Vilca-Nina , Soledad Osores , Efraín Mayhua-Lopez","doi":"10.1016/j.jvolgeores.2024.108097","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the development of a multiparametric system that utilizes artificial intelligence techniques to identify and analyze volcanic explosions in near real-time. The study analyzed 1343 explosions recorded between 2019 and 2021, along with seismic, meteorological, and visible image data from the Sabancaya volcano. Deep learning algorithms like the U-Net convolutional neural network were used to segment and measure volcanic plumes in images, while boosting-based machine learning ensembles were used to classify seismic events related to ash plumes. The findings demonstrate that these approaches effectively handle large amounts of data generated during seismic and eruptive crises. The U-Net network achieved precise segmentation of volcanic plumes with over 98% accuracy and the ability to generalize to new data. The CatBoost classifier achieved an average accuracy of 94.5% in classifying seismic events. These approaches enable the real-time estimation of eruptive parameters without human intervention, contributing to the development of early warning systems for volcanic hazards. In conclusion, this study highlights the feasibility of using seismic signals and images to detect and characterize volcanic explosions in near real-time, making a significant contribution to the field of volcanic monitoring.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"451 ","pages":"Article 108097"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027324000891","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the development of a multiparametric system that utilizes artificial intelligence techniques to identify and analyze volcanic explosions in near real-time. The study analyzed 1343 explosions recorded between 2019 and 2021, along with seismic, meteorological, and visible image data from the Sabancaya volcano. Deep learning algorithms like the U-Net convolutional neural network were used to segment and measure volcanic plumes in images, while boosting-based machine learning ensembles were used to classify seismic events related to ash plumes. The findings demonstrate that these approaches effectively handle large amounts of data generated during seismic and eruptive crises. The U-Net network achieved precise segmentation of volcanic plumes with over 98% accuracy and the ability to generalize to new data. The CatBoost classifier achieved an average accuracy of 94.5% in classifying seismic events. These approaches enable the real-time estimation of eruptive parameters without human intervention, contributing to the development of early warning systems for volcanic hazards. In conclusion, this study highlights the feasibility of using seismic signals and images to detect and characterize volcanic explosions in near real-time, making a significant contribution to the field of volcanic monitoring.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.