On the Mai–Wang stochastic decomposition for ℓp-norm symmetric survival functions on the positive orthant

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Christian Genest , Johanna G. Nešlehová
{"title":"On the Mai–Wang stochastic decomposition for ℓp-norm symmetric survival functions on the positive orthant","authors":"Christian Genest ,&nbsp;Johanna G. Nešlehová","doi":"10.1016/j.jmva.2024.105331","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, Mai and Wang (2021) investigated a class of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norm symmetric survival functions on the positive orthant. In their paper, they claim that the generator of these functions must be <span><math><mi>d</mi></math></span>-monotone. This note explains that this is not true in general. Luckily, most of the results in Mai and Wang (2021) are not affected by this oversight.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0047259X24000381/pdfft?md5=f0a3613b1587ac23eed097d6f63a0a06&pid=1-s2.0-S0047259X24000381-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000381","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Mai and Wang (2021) investigated a class of p-norm symmetric survival functions on the positive orthant. In their paper, they claim that the generator of these functions must be d-monotone. This note explains that this is not true in general. Luckily, most of the results in Mai and Wang (2021) are not affected by this oversight.

论 p 上 ℓp 正态对称生存函数的麦-王随机分解
最近,Mai 和 Wang(2021 年)研究了一类正正交上的ℓp 准则对称生存函数。在他们的论文中,他们声称这些函数的生成器必须是 d 单调的。本注释解释了这在一般情况下并非如此。幸运的是,Mai 和 Wang (2021) 中的大部分结果并没有受到这一疏忽的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信