An implementation of the Suwa method for computing first order infinitesimal versal unfoldings of codimension one complex analytic singular foliations

Shinichi Tajima , Katsusuke Nabeshima
{"title":"An implementation of the Suwa method for computing first order infinitesimal versal unfoldings of codimension one complex analytic singular foliations","authors":"Shinichi Tajima ,&nbsp;Katsusuke Nabeshima","doi":"10.1016/j.jaca.2024.100015","DOIUrl":null,"url":null,"abstract":"<div><p>The Suwa method for computing versal unfoldings of holomorphic singular foliations is considered from the point of view of computational complex analysis. Based on the theory of Grothendieck local duality on residues, an effective algorithm of computing a first order infinitesimal versal unfoldings of codimension one complex analytic singular foliations is obtained. As an application of our approach, we give an effective method for computing universal unfoldings of germs of meromorphic functions.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"10 ","pages":"Article 100015"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772827724000056/pdfft?md5=a7f0856967858d831ab684476d2eecd6&pid=1-s2.0-S2772827724000056-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827724000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Suwa method for computing versal unfoldings of holomorphic singular foliations is considered from the point of view of computational complex analysis. Based on the theory of Grothendieck local duality on residues, an effective algorithm of computing a first order infinitesimal versal unfoldings of codimension one complex analytic singular foliations is obtained. As an application of our approach, we give an effective method for computing universal unfoldings of germs of meromorphic functions.

计算一维复解析奇异叶面的一阶无穷小 versal 展开的诹访法实施方案
从计算复分析的角度研究了计算全形奇异叶形的诹访法。基于残差上的格罗thendieck 局部对偶性理论,我们得到了计算一阶无穷小对偶展开的一维复解析奇异叶形的有效算法。作为我们方法的一个应用,我们给出了计算分形函数胚芽普遍展开的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信