Qualitative analysis of solutions for a degenerate partial differential equations model of epidemic spread dynamics

Roman Taranets, Nataliya Vasylyeva, Belgacem Al-Azem
{"title":"Qualitative analysis of solutions for a degenerate partial differential equations model of epidemic spread dynamics","authors":"Roman Taranets, Nataliya Vasylyeva, Belgacem Al-Azem","doi":"10.3389/fams.2024.1383106","DOIUrl":null,"url":null,"abstract":"Compartmental models are widely used in mathematical epidemiology to describe the dynamics of infectious diseases or in mathematical models of population genetics. In this study, we study a time-dependent Susceptible-Infectious-Susceptible (SIS) Partial Differential Equation (PDE) model that is based on a diffusion-drift approximation of a probability density from a well-known discrete-time Markov chain model. This SIS-PDE model is conservative due to the degeneracy of the diffusion term at the origin. The main results of this article are the qualitative behavior of weak solutions, the dependence of the local asymptotic property of these solutions on initial data, and the existence of Dirac delta function type solutions. Moreover, we study the long-term behavior of solutions and confirm our analysis with numerical computations.","PeriodicalId":507585,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2024.1383106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Compartmental models are widely used in mathematical epidemiology to describe the dynamics of infectious diseases or in mathematical models of population genetics. In this study, we study a time-dependent Susceptible-Infectious-Susceptible (SIS) Partial Differential Equation (PDE) model that is based on a diffusion-drift approximation of a probability density from a well-known discrete-time Markov chain model. This SIS-PDE model is conservative due to the degeneracy of the diffusion term at the origin. The main results of this article are the qualitative behavior of weak solutions, the dependence of the local asymptotic property of these solutions on initial data, and the existence of Dirac delta function type solutions. Moreover, we study the long-term behavior of solutions and confirm our analysis with numerical computations.
流行病传播动力学退化偏微分方程模型解的定性分析
在数学流行病学中,隔室模型被广泛用于描述传染病的动态或种群遗传学的数学模型。在本研究中,我们研究了一个与时间相关的易感-传染-易感(SIS)偏微分方程(PDE)模型,该模型基于著名离散时间马尔可夫链模型概率密度的扩散-漂移近似。由于扩散项在原点的退化性,这种 SIS-PDE 模型是保守的。本文的主要结果是弱解的定性行为、这些解的局部渐近特性对初始数据的依赖性以及 Dirac delta 函数类型解的存在。此外,我们还研究了解的长期行为,并通过数值计算证实了我们的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信