Long-eccentricity pacing of alluvial stratigraphic architecture in the Eocene Bighorn Basin, Wyoming, USA

Geology Pub Date : 2024-05-02 DOI:10.1130/g52131.1
Youwei Wang, T. F. Baars, J. Storms, A. Martinius, P. Gingerich, H. Abels
{"title":"Long-eccentricity pacing of alluvial stratigraphic architecture in the Eocene Bighorn Basin, Wyoming, USA","authors":"Youwei Wang, T. F. Baars, J. Storms, A. Martinius, P. Gingerich, H. Abels","doi":"10.1130/g52131.1","DOIUrl":null,"url":null,"abstract":"Alluvial stratigraphy builds up over geologic time under the complex interplay of external climatic and tectonic forces and internal stochastic processes. This complexity makes it challenging to attribute alluvial stratigraphic changes to specific factors. Geological records indicate pronounced and persistent climatic changes during the Phanerozoic, while the effects of these changes on alluvial stratigraphy remain insufficiently documented. We provide evidence for 405 k.y. long-eccentricity climate forcing of alluvial stratigraphy in the lower Eocene Willwood Formation of the Bighorn Basin, Wyoming (USA). Two ∼90-m-thick intervals, characterized by a relative paucity of sand, dominance of sinuous-river channels, and floodplain sediments with better-developed paleosols, coincide with eccentricity maxima as determined through integrated stratigraphic methods. These intervals are interspersed with three contrasting intervals, marked by relatively high sand content, prevalent braided-river channels, and less-developed paleosols, corresponding to eccentricity minima. A comprehensive genetic model that integrates climate, source-to-sink system, and alluvial dynamics to explain these findings remains to be elucidated. Given the consistent presence of the 405 k.y. eccentricity cycle throughout Earth’s history, it is plausible to infer that its influence may be discernible across a wide array of alluvial stratigraphic records.","PeriodicalId":503125,"journal":{"name":"Geology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1130/g52131.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Alluvial stratigraphy builds up over geologic time under the complex interplay of external climatic and tectonic forces and internal stochastic processes. This complexity makes it challenging to attribute alluvial stratigraphic changes to specific factors. Geological records indicate pronounced and persistent climatic changes during the Phanerozoic, while the effects of these changes on alluvial stratigraphy remain insufficiently documented. We provide evidence for 405 k.y. long-eccentricity climate forcing of alluvial stratigraphy in the lower Eocene Willwood Formation of the Bighorn Basin, Wyoming (USA). Two ∼90-m-thick intervals, characterized by a relative paucity of sand, dominance of sinuous-river channels, and floodplain sediments with better-developed paleosols, coincide with eccentricity maxima as determined through integrated stratigraphic methods. These intervals are interspersed with three contrasting intervals, marked by relatively high sand content, prevalent braided-river channels, and less-developed paleosols, corresponding to eccentricity minima. A comprehensive genetic model that integrates climate, source-to-sink system, and alluvial dynamics to explain these findings remains to be elucidated. Given the consistent presence of the 405 k.y. eccentricity cycle throughout Earth’s history, it is plausible to infer that its influence may be discernible across a wide array of alluvial stratigraphic records.
美国怀俄明州始新世比格霍恩盆地冲积地层结构的长地心步调
冲积地层是在外部气候和构造作用力以及内部随机过程的复杂相互作用下,随着地质时间的推移而形成的。这种复杂性使得将冲积地层变化归因于特定因素具有挑战性。地质记录表明新生代期间气候发生了明显而持续的变化,而这些变化对冲积地层的影响却没有得到充分的记录。我们提供的证据表明,在美国怀俄明州比格霍恩盆地下始新世威尔伍德地层中,冲积地层受到了 405 千年长同心度气候的影响。通过综合地层学方法确定,两个厚度为 90 米的区间与偏心率最大值相吻合,这两个区间的特点是砂质相对较少,蜿蜒的河道占主导地位,洪积平原沉积物具有较发达的古土壤。在这些区间中,夹杂着三个对比鲜明的区间,其特点是含沙量相对较高、辫状河道盛行、古沉积较不发达,与偏心率最小区间相对应。一个综合气候、源-汇系统和冲积动力学来解释这些发现的全面遗传模型仍有待阐明。鉴于 405 千年偏心率周期在整个地球历史中的持续存在,我们可以推断,在大量冲积地层记录中都可以看到偏心率周期的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信