Transient Heat Transfer Analysis in Metal Plates with Variable Thickness

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
Mohammed Taibi, Younes Abouelhanoune, F. Dimane
{"title":"Transient Heat Transfer Analysis in Metal Plates with Variable Thickness","authors":"Mohammed Taibi, Younes Abouelhanoune, F. Dimane","doi":"10.21315/jps2024.35.1.1","DOIUrl":null,"url":null,"abstract":"Nonlinear transient heat transfer via conduction–radiation is a dynamic topic of long-standing interest with applications ranging from aeronautical and mechanical engineering to industrial and civil security. To gain a better understanding of the performances of materials having thermal proprieties that change during nonlinear heat transfer, several studies using the finite element method (FEM) have been conducted. Such studies apply nonlinear thermal material characteristics to describe the complete system under different loading conditions in each region by adjusting the temperature values for the other three edges and the thickness parameter with Dirichlet boundary conditions. As a result, while modeling and simulating temperature distributions for such situations, nonlinearities generated by temperature-dependent thermal conductivity must be considered. In this work, we focus on the analysis of coupled transient heat transfer through two metal plates with temperature-dependent thermal characteristics in which the temperature is fixed along the bottom edge and heat is transferred from both the top and bottom faces of the two plates. FEM is employed to solve the nonlinear heat equation and compute the temperature as a function of time for variable thickness. The study examines the effect of modifying the thickness parameter values on the temperature distribution over time for various edge values over 5,000 s.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/jps2024.35.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear transient heat transfer via conduction–radiation is a dynamic topic of long-standing interest with applications ranging from aeronautical and mechanical engineering to industrial and civil security. To gain a better understanding of the performances of materials having thermal proprieties that change during nonlinear heat transfer, several studies using the finite element method (FEM) have been conducted. Such studies apply nonlinear thermal material characteristics to describe the complete system under different loading conditions in each region by adjusting the temperature values for the other three edges and the thickness parameter with Dirichlet boundary conditions. As a result, while modeling and simulating temperature distributions for such situations, nonlinearities generated by temperature-dependent thermal conductivity must be considered. In this work, we focus on the analysis of coupled transient heat transfer through two metal plates with temperature-dependent thermal characteristics in which the temperature is fixed along the bottom edge and heat is transferred from both the top and bottom faces of the two plates. FEM is employed to solve the nonlinear heat equation and compute the temperature as a function of time for variable thickness. The study examines the effect of modifying the thickness parameter values on the temperature distribution over time for various edge values over 5,000 s.
厚度可变金属板的瞬态传热分析
通过传导-辐射进行非线性瞬态传热是一个长期受关注的动态课题,其应用范围从航空和机械工程到工业和民用安全。为了更好地了解具有热特性的材料在非线性传热过程中的性能变化,人们使用有限元法(FEM)进行了多项研究。这些研究采用非线性热材料特性,通过调整其他三个边缘的温度值和厚度参数,在每个区域的不同加载条件下描述整个系统,并使用 Dirichlet 边界条件。因此,在对这种情况下的温度分布进行建模和模拟时,必须考虑由温度相关导热性产生的非线性。在本研究中,我们重点分析了两块金属板的耦合瞬态传热,这两块金属板的热特性与温度有关,其中底部边缘的温度固定不变,热量从两块金属板的顶部和底部传递。在厚度可变的情况下,采用有限元求解非线性热方程并计算温度随时间的变化。研究考察了在 5,000 秒内修改厚度参数值对不同边缘值随时间变化的温度分布的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physical Science
Journal of Physical Science Physics and Astronomy-Physics and Astronomy (all)
CiteScore
1.70
自引率
0.00%
发文量
19
期刊介绍: The aim of the journal is to disseminate latest scientific ideas and findings in the field of physical sciences among scientists in Malaysia and international regions. This journal is devoted to the publication of articles dealing with research works in Chemistry, Physics and Engineering. Review articles will also be considered. Manuscripts must be of scientific value and will be submitted to independent referees for review. Contributions must be written in English and must not have been published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信