First comprehensive assessment of industrial-era land heat uptake from multiple sources

F. García-Pereira, J. González-Rouco, C. Melo-Aguilar, N. Steinert, E. García-Bustamante, P. de Vrese, Johann Jungclaus, Stephan Lorenz, S. Hagemann, F. J. Cuesta-Valero, A. García‐García, H. Beltrami
{"title":"First comprehensive assessment of industrial-era land heat uptake from multiple sources","authors":"F. García-Pereira, J. González-Rouco, C. Melo-Aguilar, N. Steinert, E. García-Bustamante, P. de Vrese, Johann Jungclaus, Stephan Lorenz, S. Hagemann, F. J. Cuesta-Valero, A. García‐García, H. Beltrami","doi":"10.5194/esd-15-547-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The anthropogenically intensified greenhouse effect has caused a radiative imbalance at the top of the atmosphere during the industrial period. This, in turn, has led to an energy surplus in various components of the Earth system, with the ocean storing the largest part. The land contribution ranks second with the latest observational estimates based on borehole temperature profiles, which quantify the terrestrial energy surplus to be 6 % in the last 5 decades, whereas studies based on state-of-the-art climate models scale it down to 2 %. This underestimation stems from land surface models (LSMs) having a subsurface that is too shallow, which severely constrains the land heat uptake simulated by Earth system models (ESMs). A forced simulation of the last 2000 years with the Max Planck Institute ESM (MPI-ESM) using a deep LSM captures 4 times more heat than the standard shallow MPI-ESM simulations in the historical period, well above the estimates provided by other ESMs. However, deepening the LSM does not remarkably affect the simulated surface temperature. It is shown that the heat stored during the historical period by an ESM using a deep LSM component can be accurately estimated by considering the surface temperatures simulated by the ESM using a shallow LSM and propagating them with a standalone forward model. This result is used to derive estimates of land heat uptake using all available observational datasets, reanalysis products, and state-of-the-art ESM experiments. This approach yields values of 10.5–16.0 ZJ for 1971–2018, which are 12 %–42 % smaller than the latest borehole-based estimates (18.2 ZJ).\n","PeriodicalId":504863,"journal":{"name":"Earth System Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth System Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-15-547-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The anthropogenically intensified greenhouse effect has caused a radiative imbalance at the top of the atmosphere during the industrial period. This, in turn, has led to an energy surplus in various components of the Earth system, with the ocean storing the largest part. The land contribution ranks second with the latest observational estimates based on borehole temperature profiles, which quantify the terrestrial energy surplus to be 6 % in the last 5 decades, whereas studies based on state-of-the-art climate models scale it down to 2 %. This underestimation stems from land surface models (LSMs) having a subsurface that is too shallow, which severely constrains the land heat uptake simulated by Earth system models (ESMs). A forced simulation of the last 2000 years with the Max Planck Institute ESM (MPI-ESM) using a deep LSM captures 4 times more heat than the standard shallow MPI-ESM simulations in the historical period, well above the estimates provided by other ESMs. However, deepening the LSM does not remarkably affect the simulated surface temperature. It is shown that the heat stored during the historical period by an ESM using a deep LSM component can be accurately estimated by considering the surface temperatures simulated by the ESM using a shallow LSM and propagating them with a standalone forward model. This result is used to derive estimates of land heat uptake using all available observational datasets, reanalysis products, and state-of-the-art ESM experiments. This approach yields values of 10.5–16.0 ZJ for 1971–2018, which are 12 %–42 % smaller than the latest borehole-based estimates (18.2 ZJ).
首次从多个来源全面评估工业时代的土地吸热情况
摘要在工业化时期,人为加剧的温室效应造成了大气顶部的辐射失衡。这反过来又导致地球系统各组成部分的能量过剩,其中海洋储存的能量最多。根据基于钻孔温度曲线的最新观测估算,陆地的贡献排在第二位,在过去的 50 年中,陆地的能量盈余达到了 6%,而基于最新气候模型的研究则将其缩减为 2%。造成这种低估的原因是陆地表面模型(LSM)的地下太浅,严重制约了地球系统模型(ESM)模拟的陆地热吸收。马克斯-普朗克研究所的 ESM(MPI-ESM)对过去 2000 年进行了强制模拟,使用深层 LSM 捕获的热量是历史时期标准浅层 MPI-ESM 模拟的 4 倍,远高于其他 ESM 提供的估计值。然而,加深 LSM 对模拟地表温度的影响并不明显。结果表明,使用深层 LSM 组件的 ESM 在历史时期储存的热量,可以通过考虑使用浅层 LSM 的 ESM 模拟的地表温度,并用独立的前向模型进行传播来准确估算。这一结果被用于利用所有可用的观测数据集、再分析产品和最先进的 ESM 试验得出陆地热吸收的估计值。这种方法得出 1971-2018 年的数值为 10.5-16.0 ZJ,比基于钻孔的最新估计值(18.2 ZJ)小 12%-42%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信