J. Aguilar, K. Buchin, M. Buchin, Erfan Hosseini Sereshgi, Rodrigo I. Silveira, C. Wenk
{"title":"Graph Sampling for Map Comparison","authors":"J. Aguilar, K. Buchin, M. Buchin, Erfan Hosseini Sereshgi, Rodrigo I. Silveira, C. Wenk","doi":"10.1145/3662733","DOIUrl":null,"url":null,"abstract":"\n Comparing two road maps is a basic operation that arises in a variety of situations. A map comparison method that is commonly used, mainly in the context of comparing reconstructed maps to ground truth maps, is based on\n graph sampling\n . The essential idea is to first compute a set of point samples on each map, and then to match pairs of samples—one from each map—in a one-to-one fashion. For deciding whether two samples can be matched, different criteria, e.g., based on distance or orientation, can be used. The total number of matched pairs gives a measure of how similar the maps are.\n \n Since the work of Biagioni and Eriksson [11, 12], graph sampling methods have become widely used. However, there are different ways to implement each of the steps, which can lead to significant differences in the results. This means that conclusions drawn from different studies that seemingly use the same comparison method, cannot necessarily be compared.\n In this work we present a unified approach to graph sampling for map comparison. We present the method in full generality, discussing the main decisions involved in its implementation. In particular, we point out the importance of the sampling method (GEO vs. TOPO) and that of the matching definition, discussing the main options used, and proposing alternatives for both key steps. We experimentally evaluate the different sampling and matching options considered on map datasets and reconstructed maps. Furthermore, we provide a code base and an interactive visualization tool to set a standard for future evaluations in the field of map construction and map comparison.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3662733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Comparing two road maps is a basic operation that arises in a variety of situations. A map comparison method that is commonly used, mainly in the context of comparing reconstructed maps to ground truth maps, is based on
graph sampling
. The essential idea is to first compute a set of point samples on each map, and then to match pairs of samples—one from each map—in a one-to-one fashion. For deciding whether two samples can be matched, different criteria, e.g., based on distance or orientation, can be used. The total number of matched pairs gives a measure of how similar the maps are.
Since the work of Biagioni and Eriksson [11, 12], graph sampling methods have become widely used. However, there are different ways to implement each of the steps, which can lead to significant differences in the results. This means that conclusions drawn from different studies that seemingly use the same comparison method, cannot necessarily be compared.
In this work we present a unified approach to graph sampling for map comparison. We present the method in full generality, discussing the main decisions involved in its implementation. In particular, we point out the importance of the sampling method (GEO vs. TOPO) and that of the matching definition, discussing the main options used, and proposing alternatives for both key steps. We experimentally evaluate the different sampling and matching options considered on map datasets and reconstructed maps. Furthermore, we provide a code base and an interactive visualization tool to set a standard for future evaluations in the field of map construction and map comparison.
期刊介绍:
ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.