Comparison of the hydrogen damage of different rolling surfaces of TC4 Ti alloy sheet

IF 2.7 4区 材料科学 Q3 ELECTROCHEMISTRY
Yingwei Song, Xiaozhen Liu, En-Hou Han
{"title":"Comparison of the hydrogen damage of different rolling surfaces of TC4 Ti alloy sheet","authors":"Yingwei Song, Xiaozhen Liu, En-Hou Han","doi":"10.1515/corrrev-2023-0126","DOIUrl":null,"url":null,"abstract":"\n The microstructure of three rolling surfaces of TC4 sheet is different, and their resistance ability to hydrogen damage lacks systematic research. Thus, the hydrogen damage behavior of TC4 rolling sheet was investigated in this paper. The hydrogen diffusion law along different rolling directions and the precipitation of hydrides on different rolling surfaces were compared. It is found that the shape and distribution of α and β phases are changed under the action of extrusion force during the rolling process, and they are arranged in striped shape on the R-N surface along the R direction, and the diffusion of hydrogen along the R direction is faster due to the existence of continuous β phases as hydrogen diffusion channels, resulting in the more serious hydrogen damage. Besides the hydrides mainly deposited at the α and β phase boundaries, the hydrides precipitated in the interior of α phases on the R-N surface are more than that on the R-T surface due to the different distribution state of β phases.","PeriodicalId":10721,"journal":{"name":"Corrosion Reviews","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/corrrev-2023-0126","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The microstructure of three rolling surfaces of TC4 sheet is different, and their resistance ability to hydrogen damage lacks systematic research. Thus, the hydrogen damage behavior of TC4 rolling sheet was investigated in this paper. The hydrogen diffusion law along different rolling directions and the precipitation of hydrides on different rolling surfaces were compared. It is found that the shape and distribution of α and β phases are changed under the action of extrusion force during the rolling process, and they are arranged in striped shape on the R-N surface along the R direction, and the diffusion of hydrogen along the R direction is faster due to the existence of continuous β phases as hydrogen diffusion channels, resulting in the more serious hydrogen damage. Besides the hydrides mainly deposited at the α and β phase boundaries, the hydrides precipitated in the interior of α phases on the R-N surface are more than that on the R-T surface due to the different distribution state of β phases.
TC4 Ti 合金板材不同轧制表面的氢损伤比较
TC4 薄板三个轧制面的微观结构各不相同,其抗氢损伤能力缺乏系统研究。因此,本文研究了 TC4 轧制薄板的氢损伤行为。比较了氢沿不同轧制方向的扩散规律和氢化物在不同轧制表面的析出情况。研究发现,在轧制过程中,α相和β相在挤出力的作用下形状和分布发生了变化,在R-N表面沿R方向呈条状排列,由于存在连续的β相作为氢扩散通道,氢沿R方向的扩散速度更快,导致氢损伤更为严重。除了氢化物主要沉积在 α 和 β 相边界外,由于 β 相的分布状态不同,R-N 表面 α 相内部析出的氢化物比 R-T 表面多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Corrosion Reviews
Corrosion Reviews 工程技术-材料科学:膜
CiteScore
5.20
自引率
3.10%
发文量
44
审稿时长
4.5 months
期刊介绍: Corrosion Reviews is an international bimonthly journal devoted to critical reviews and, to a lesser extent, outstanding original articles that are key to advancing the understanding and application of corrosion science and engineering in the service of society. Papers may be of a theoretical, experimental or practical nature, provided that they make a significant contribution to knowledge in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信