Inference Analysis of Video Quality of Experience in Relation with Face Emotion, Video Advertisement, and ITU-T P.1203

Tisa Selma, M. M. Masud, A. Bentaleb, Saad Harous
{"title":"Inference Analysis of Video Quality of Experience in Relation with Face Emotion, Video Advertisement, and ITU-T P.1203","authors":"Tisa Selma, M. M. Masud, A. Bentaleb, Saad Harous","doi":"10.3390/technologies12050062","DOIUrl":null,"url":null,"abstract":"This study introduces an FER-based machine learning framework for real-time QoE assessment in video streaming. This study’s aim is to address the challenges posed by end-to-end encryption and video advertisement while enhancing user QoE. Our proposed framework significantly outperforms the base reference, ITU-T P.1203, by up to 37.1% in terms of accuracy and 21.74% after attribute selection. Our study contributes to the field in two ways. First, we offer a promising solution to enhance user satisfaction in video streaming services via real-time user emotion and user feedback integration, providing a more holistic understanding of user experience. Second, high-quality data collection and insights are offered by collecting real data from diverse regions to minimize any potential biases and provide advertisement placement suggestions.","PeriodicalId":22341,"journal":{"name":"Technologies","volume":"93 S1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies12050062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces an FER-based machine learning framework for real-time QoE assessment in video streaming. This study’s aim is to address the challenges posed by end-to-end encryption and video advertisement while enhancing user QoE. Our proposed framework significantly outperforms the base reference, ITU-T P.1203, by up to 37.1% in terms of accuracy and 21.74% after attribute selection. Our study contributes to the field in two ways. First, we offer a promising solution to enhance user satisfaction in video streaming services via real-time user emotion and user feedback integration, providing a more holistic understanding of user experience. Second, high-quality data collection and insights are offered by collecting real data from diverse regions to minimize any potential biases and provide advertisement placement suggestions.
视频体验质量与面部情绪、视频广告和 ITU-T P.1203 的关系推理分析
本研究介绍了一种基于 FER 的机器学习框架,用于视频流中的实时 QoE 评估。这项研究旨在解决端到端加密和视频广告带来的挑战,同时提高用户 QoE。我们提出的框架在准确性方面明显优于基础参考文献 ITU-T P.1203,准确率高达 37.1%,在属性选择后为 21.74%。我们的研究在两个方面为该领域做出了贡献。首先,我们提供了一种有前途的解决方案,通过实时用户情感和用户反馈整合,提供对用户体验更全面的理解,从而提高视频流服务的用户满意度。其次,通过收集来自不同地区的真实数据,我们提供了高质量的数据收集和见解,从而最大限度地减少了任何潜在的偏差,并提供了广告投放建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信