Study of Orifice Design on Oleo-Pneumatic Shock Absorber

IF 1.8 Q3 MECHANICS
Fluids Pub Date : 2024-05-03 DOI:10.3390/fluids9050108
P. Silva, A. S. Sheikh Al-Shabab, Panagiotis Tsoutsanis, M. Skote
{"title":"Study of Orifice Design on Oleo-Pneumatic Shock Absorber","authors":"P. Silva, A. S. Sheikh Al-Shabab, Panagiotis Tsoutsanis, M. Skote","doi":"10.3390/fluids9050108","DOIUrl":null,"url":null,"abstract":"Aircraft oil-strut shock absorbers rely on orifice designs to control fluid flow and optimize damping performance. However, the complex nature of cavitating flows poses significant challenges in predicting the influence of orifice geometry on energy dissipation and system reliability. This study presents a comprehensive computational fluid dynamics (CFD) analysis of the effects of circular, rectangular, semicircular, and cutback orifice profiles on the internal flow characteristics and damping behavior of oleo-pneumatic shock absorbers. High-fidelity simulations reveal that the rectangular orifice generates higher damping pressures and velocity magnitude than those generated by others designs, while the semicircular shape reduces cavitation inception and exhibits a more gradual pressure recovery. Furthermore, the study highlights the importance of considering both geometric and thermodynamic factors in the design and analysis of cavitating flow systems, as liquid properties and vapor pressure significantly impact bubble growth and collapse behavior. Increasing the orifice length had a negligible impact on damping but moderately raised orifice velocities. This research provides valuable insights for optimizing shock absorber performance across a range of operating conditions, ultimately enhancing vehicle safety and passenger comfort.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids9050108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Aircraft oil-strut shock absorbers rely on orifice designs to control fluid flow and optimize damping performance. However, the complex nature of cavitating flows poses significant challenges in predicting the influence of orifice geometry on energy dissipation and system reliability. This study presents a comprehensive computational fluid dynamics (CFD) analysis of the effects of circular, rectangular, semicircular, and cutback orifice profiles on the internal flow characteristics and damping behavior of oleo-pneumatic shock absorbers. High-fidelity simulations reveal that the rectangular orifice generates higher damping pressures and velocity magnitude than those generated by others designs, while the semicircular shape reduces cavitation inception and exhibits a more gradual pressure recovery. Furthermore, the study highlights the importance of considering both geometric and thermodynamic factors in the design and analysis of cavitating flow systems, as liquid properties and vapor pressure significantly impact bubble growth and collapse behavior. Increasing the orifice length had a negligible impact on damping but moderately raised orifice velocities. This research provides valuable insights for optimizing shock absorber performance across a range of operating conditions, ultimately enhancing vehicle safety and passenger comfort.
油气减震器孔口设计研究
飞机油支杆减震器依靠孔口设计来控制流体流动和优化阻尼性能。然而,气蚀流的复杂性给预测孔口几何形状对能量耗散和系统可靠性的影响带来了巨大挑战。本研究对圆形、矩形、半圆形和后切式孔口剖面对油气减震器内部流动特性和阻尼行为的影响进行了全面的计算流体动力学(CFD)分析。高保真模拟显示,矩形孔口产生的阻尼压力和速度幅度高于其他设计,而半圆形则减少了气穴的产生,并表现出更渐进的压力恢复。此外,该研究还强调了在设计和分析空化流系统时同时考虑几何和热力学因素的重要性,因为液体特性和蒸汽压力会对气泡的生长和溃散行为产生重大影响。增加孔口长度对阻尼的影响可以忽略不计,但会适度提高孔口速度。这项研究为在各种工作条件下优化减震器性能提供了宝贵的见解,最终提高了车辆安全性和乘客舒适度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluids
Fluids Engineering-Mechanical Engineering
CiteScore
3.40
自引率
10.50%
发文量
326
审稿时长
12 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信