MTTLA‐DLW: Multi‐task TCN‐Bi‐LSTM transfer learning approach with dynamic loss weights based on feature correlations of the training samples for short‐term wind power prediction
Jifeng Song, Xiaosheng Peng, Jiajiong Song, Zimin Yang, Bo Wang, Jianfeng Che
{"title":"MTTLA‐DLW: Multi‐task TCN‐Bi‐LSTM transfer learning approach with dynamic loss weights based on feature correlations of the training samples for short‐term wind power prediction","authors":"Jifeng Song, Xiaosheng Peng, Jiajiong Song, Zimin Yang, Bo Wang, Jianfeng Che","doi":"10.1002/we.2909","DOIUrl":null,"url":null,"abstract":"Wind power prediction for newly built wind farms is usually faced with the problem of no sufficient historical data. To efficiently extract the useful features from related wind farms, a novel transfer learning method based on temporal convolutional network (TCN)‐Bi‐long short‐term memory (LSTM) with dynamic loss weights is proposed. Firstly, a novel multi‐task TCN‐Bi‐LSTM model is designed to extract common features. The separate TCNs, and common Bi‐LSTM layers of the proposed model are designed to extract the temporal features from related wind farms. Secondly, in the pre‐training stage, to optimize the training process of the neural networks, a dynamic loss‐weighting strategy is proposed for multi‐task learning (MTL) to select the most related features, which increase the prediction accuracy by providing a suitable optimization object. Thirdly, the multi‐task TCN‐Bi‐LSTM model is re‐trained based on the samples from the target wind farm. Finally, a dataset of seven wind farms was employed to evaluate the efficiency of the proposed MTL structure and the dynamic loss‐weighting strategy. The result shows that the root mean squared error of the 12‐h short‐term prediction can be decreased by 4.19% compared with the traditional single‐task learning model, which verifies the validity of the proposed multi‐task transfer learning method.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/we.2909","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wind power prediction for newly built wind farms is usually faced with the problem of no sufficient historical data. To efficiently extract the useful features from related wind farms, a novel transfer learning method based on temporal convolutional network (TCN)‐Bi‐long short‐term memory (LSTM) with dynamic loss weights is proposed. Firstly, a novel multi‐task TCN‐Bi‐LSTM model is designed to extract common features. The separate TCNs, and common Bi‐LSTM layers of the proposed model are designed to extract the temporal features from related wind farms. Secondly, in the pre‐training stage, to optimize the training process of the neural networks, a dynamic loss‐weighting strategy is proposed for multi‐task learning (MTL) to select the most related features, which increase the prediction accuracy by providing a suitable optimization object. Thirdly, the multi‐task TCN‐Bi‐LSTM model is re‐trained based on the samples from the target wind farm. Finally, a dataset of seven wind farms was employed to evaluate the efficiency of the proposed MTL structure and the dynamic loss‐weighting strategy. The result shows that the root mean squared error of the 12‐h short‐term prediction can be decreased by 4.19% compared with the traditional single‐task learning model, which verifies the validity of the proposed multi‐task transfer learning method.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.