Influence of Sweep Angle on the Surface Pressure of Delta Wing Along Pivot Positions at Hypersonic Mach Numbers

Q3 Chemical Engineering
Shamitha, Asha Crasta, Sher Afghan Khan
{"title":"Influence of Sweep Angle on the Surface Pressure of Delta Wing Along Pivot Positions at Hypersonic Mach Numbers","authors":"Shamitha, Asha Crasta, Sher Afghan Khan","doi":"10.37934/arfmts.116.2.172191","DOIUrl":null,"url":null,"abstract":"This study focuses on analyzing pressure distribution across the wing surface under different flight conditions. The distribution of surface pressure plays a crucial role in determining the performance of a delta wing. The outcomes of this research will be beneficial for stability assessment and enhancing performance during the aircraft design phase. The paper illustrates the impact of high supersonic Mach numbers, angles of incidence, and specific locations along the three-dimensional delta wing. Strips located at various span-wise positions are treated independently based on a strip theory, which when combined with hypersonic similitude, results in a piston theory. It is important to note that the current theory is only valid when the shock wave remains attached. Viscosity and wave reflection effects have not been taken into account in this particular study. The parameters considered in the study are the Mach numbers (M) in the range 4 to 7. Furthermore, consideration is given to the Angle of Incidence (θ), which varies between 5° to 25°. Along the Wings chord from 0.2 to 1, different points (h) record the pressure results (P2/P1). For numerical simulations, CFD was used, and simulated results at hypersonic Mach numbers matched well with analytical results.","PeriodicalId":37460,"journal":{"name":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Fluid Mechanics and Thermal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arfmts.116.2.172191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on analyzing pressure distribution across the wing surface under different flight conditions. The distribution of surface pressure plays a crucial role in determining the performance of a delta wing. The outcomes of this research will be beneficial for stability assessment and enhancing performance during the aircraft design phase. The paper illustrates the impact of high supersonic Mach numbers, angles of incidence, and specific locations along the three-dimensional delta wing. Strips located at various span-wise positions are treated independently based on a strip theory, which when combined with hypersonic similitude, results in a piston theory. It is important to note that the current theory is only valid when the shock wave remains attached. Viscosity and wave reflection effects have not been taken into account in this particular study. The parameters considered in the study are the Mach numbers (M) in the range 4 to 7. Furthermore, consideration is given to the Angle of Incidence (θ), which varies between 5° to 25°. Along the Wings chord from 0.2 to 1, different points (h) record the pressure results (P2/P1). For numerical simulations, CFD was used, and simulated results at hypersonic Mach numbers matched well with analytical results.
扫掠角对高超音速马赫数下三角翼沿枢轴位置表面压力的影响
本研究的重点是分析不同飞行条件下机翼表面的压力分布。表面压力分布对三角翼的性能起着至关重要的作用。这项研究的成果将有助于飞机设计阶段的稳定性评估和性能提升。论文阐述了高超音速马赫数、入射角和三维三角翼特定位置的影响。根据条带理论对位于不同跨度位置的条带进行了独立处理,结合高超音速模拟,得出了活塞理论。需要注意的是,目前的理论只有在冲击波保持附着时才有效。本研究没有考虑粘度和波反射效应。研究中考虑的参数是马赫数 (M),范围在 4 到 7 之间。此外,还考虑了入射角 (θ),入射角在 5° 至 25° 之间变化。沿着翼弦从 0.2 到 1,不同的点(h)记录了压力结果(P2/P1)。数值模拟使用了 CFD,高超音速马赫数下的模拟结果与分析结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences
Journal of Advanced Research in Fluid Mechanics and Thermal Sciences Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
2.40
自引率
0.00%
发文量
176
期刊介绍: This journal welcomes high-quality original contributions on experimental, computational, and physical aspects of fluid mechanics and thermal sciences relevant to engineering or the environment, multiphase and microscale flows, microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信