An orthogonal class of $p$-Legendre polynomials on variable interval

IF 0.7 Q2 MATHEMATICS
Nidhi R. Joshi, B. I. Dave
{"title":"An orthogonal class of $p$-Legendre polynomials on variable interval","authors":"Nidhi R. Joshi, B. I. Dave","doi":"10.5556/j.tkjm.56.2025.5222","DOIUrl":null,"url":null,"abstract":"The work incorporates a generalization of the Legendre polynomial by introducing a parameter $p>0$ in its generating function. The coefficients thus generated, constitute a class of the polynomials which are termed as the $p$-Legendre polynomials. It is shown that this class turns out to be orthogonal with respect to the weight function: $(1-\\sqrt{p}\\ x)^{\\frac{p+1}{2p}-1}(1+\\sqrt{p}\\ x)^{\\frac{p+1}{2p}-1}$ over the interval $(-\\frac{1}{\\sqrt{p}}, \\frac{1}{\\sqrt{p}}).$ Among the other properties derived, include the Rodrigues formula, normalization, recurrence relation and zeros. A graphic depiction for $p=0.5, 1, 2,$ and $3$ is shown. The $p$-Legendre polynomials are used to estimate a function using the least squares approach. The approximations are graphically depicted for $p=0.7, 1, 2.$","PeriodicalId":45776,"journal":{"name":"Tamkang Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tamkang Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5556/j.tkjm.56.2025.5222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The work incorporates a generalization of the Legendre polynomial by introducing a parameter $p>0$ in its generating function. The coefficients thus generated, constitute a class of the polynomials which are termed as the $p$-Legendre polynomials. It is shown that this class turns out to be orthogonal with respect to the weight function: $(1-\sqrt{p}\ x)^{\frac{p+1}{2p}-1}(1+\sqrt{p}\ x)^{\frac{p+1}{2p}-1}$ over the interval $(-\frac{1}{\sqrt{p}}, \frac{1}{\sqrt{p}}).$ Among the other properties derived, include the Rodrigues formula, normalization, recurrence relation and zeros. A graphic depiction for $p=0.5, 1, 2,$ and $3$ is shown. The $p$-Legendre polynomials are used to estimate a function using the least squares approach. The approximations are graphically depicted for $p=0.7, 1, 2.$
可变区间上的一类正交$p$-Legendre多项式
这项工作通过在生成函数中引入一个参数 $p>0$,对勒让德多项式进行了概括。由此产生的系数构成了一类多项式,被称为 $p$-Legendre 多项式。研究表明,这一类多项式在权重函数方面是正交的:$(1-\sqrt{p}\x)^{\frac{p+1}{2p}-1}(1+\sqrt{p}\x)^{\frac{p+1}{2p}-1}$在区间$(-\frac{1}{sqrt{p}}, \frac{1}{sqrt{p}})上。$ 得出的其他性质包括罗德里格斯公式、归一化、递推关系和零点。图中显示了 $p=0.5、1、2、$ 和 $3$ 的图形。使用最小二乘法对 p$-Legendre 多项式进行函数估计。图中给出了 p=0.7、1、2.$ 的近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
11
期刊介绍: To promote research interactions between local and overseas researchers, the Department has been publishing an international mathematics journal, the Tamkang Journal of Mathematics. The journal started as a biannual journal in 1970 and is devoted to high-quality original research papers in pure and applied mathematics. In 1985 it has become a quarterly journal. The four issues are out for distribution at the end of March, June, September and December. The articles published in Tamkang Journal of Mathematics cover diverse mathematical disciplines. Submission of papers comes from all over the world. All articles are subjected to peer review from an international pool of referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信