Variational integrators on manifolds for constrained mechanical systems

Ziying Lin, Hongcheng Li, Ye Ding, Xiangyang Zhu
{"title":"Variational integrators on manifolds for constrained mechanical systems","authors":"Ziying Lin, Hongcheng Li, Ye Ding, Xiangyang Zhu","doi":"10.1115/1.4065477","DOIUrl":null,"url":null,"abstract":"\n Variational integrators play a pivotal role in the simulation and control of constrained mechanical systems. Recognizing the need for a Lagrange-multiplier-free approach in such systems, this study introduces a novel method for constructing variational integrators on manifolds. Our approach unfolds in three key steps: (1) local parameterization of configuration space; (2) formulation of forced discrete Euler-Lagrange equations on manifolds; (3) derivation and implementation of highorder variational integrators. Numerical tests are conducted for both conservative and forced mechanical systems, demonstrating the excellent global energy behavior of the proposed variational integrators.","PeriodicalId":508156,"journal":{"name":"Journal of Applied Mechanics","volume":"40 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Variational integrators play a pivotal role in the simulation and control of constrained mechanical systems. Recognizing the need for a Lagrange-multiplier-free approach in such systems, this study introduces a novel method for constructing variational integrators on manifolds. Our approach unfolds in three key steps: (1) local parameterization of configuration space; (2) formulation of forced discrete Euler-Lagrange equations on manifolds; (3) derivation and implementation of highorder variational integrators. Numerical tests are conducted for both conservative and forced mechanical systems, demonstrating the excellent global energy behavior of the proposed variational integrators.
受约束机械系统流形上的变分积分器
变分积分器在受约束机械系统的模拟和控制中发挥着举足轻重的作用。认识到在此类系统中需要一种无拉格朗日乘法器的方法,本研究介绍了一种在流形上构建变分积分器的新方法。我们的方法分为三个关键步骤:(1) 配置空间的局部参数化;(2) 流形上强制离散欧拉-拉格朗日方程的表述;(3) 高阶变分积分器的推导和实现。对保守和强制机械系统进行了数值测试,证明了所提出的变分积分器具有出色的全局能量行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信