Error estimates for a mixed finite element method for the Maxwell’s transmission eigenvalue problem

Chao Wang, Jintao Cui, Jiguang Sun
{"title":"Error estimates for a mixed finite element method for the Maxwell’s transmission eigenvalue problem","authors":"Chao Wang, Jintao Cui, Jiguang Sun","doi":"10.1051/m2an/2024033","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze a numerical method combining the Ciarlet-Raviart mixed finite element formulation and an iterative algorithm for the Maxwell’s transmission eigenvalue problem. The eigenvalue problem is first written as a nonlinear quad-curl eigenvalue problem. Then the real transmission eigenvalues are proved to be the roots of a non-linear function. They are the generalized eigenvalues of a related linear self-adjoint quad-curl eigenvalue problem. These generalized eigenvalues are computed by a mixed finite element method. We derive the error estimates using the spectral approximation of compact operators, the theory of mixed finite element method for quad-curl problems, and the derivatives of eigenvalues.","PeriodicalId":505020,"journal":{"name":"ESAIM: Mathematical Modelling and Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Mathematical Modelling and Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2024033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we analyze a numerical method combining the Ciarlet-Raviart mixed finite element formulation and an iterative algorithm for the Maxwell’s transmission eigenvalue problem. The eigenvalue problem is first written as a nonlinear quad-curl eigenvalue problem. Then the real transmission eigenvalues are proved to be the roots of a non-linear function. They are the generalized eigenvalues of a related linear self-adjoint quad-curl eigenvalue problem. These generalized eigenvalues are computed by a mixed finite element method. We derive the error estimates using the spectral approximation of compact operators, the theory of mixed finite element method for quad-curl problems, and the derivatives of eigenvalues.
麦克斯韦传输特征值问题混合有限元法的误差估计
本文分析了一种将 Ciarlet-Raviart 混合有限元公式与麦克斯韦传输特征值问题迭代算法相结合的数值方法。首先将特征值问题写成一个非线性四曲面特征值问题。然后证明实透射特征值是一个非线性函数的根。它们是相关线性自关节四曲线特征值问题的广义特征值。这些广义特征值是通过混合有限元法计算得出的。我们利用紧凑算子的谱近似、四卷问题的混合有限元法理论以及特征值的导数推导出误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信