Characterization and Identification of Dependence in EMG Signals from Action Potentials and Random Firing Patterns

Gabriela León, Emely López, Hans López, Cesar Hernández
{"title":"Characterization and Identification of Dependence in EMG Signals from Action Potentials and Random Firing Patterns","authors":"Gabriela León, Emely López, Hans López, Cesar Hernández","doi":"10.3991/ijoe.v20i07.47373","DOIUrl":null,"url":null,"abstract":"Electromyographic (EMG) signals are biomedical signals that represent neuromuscular activities. The EMG signal is neither stationary nor periodic and exhibits complex interference patterns of several single motor unit action potentials (SMUAPs). This study aims to characterize EMG signals concerning firing patterns and other characteristics and to identify whether these MUAP firing patterns present short-range dependencies (SRD) or long-range dependencies (LRD). To do so, we characterized 208 EMG signals in terms of the number of phases, turns and combinations of phases. Then, we performed a statistical comparison of the (more efficient) Variance-time plot against the (less bias) Log-scale diagram for the estimation of the Hurst parameter and detection of LRD. Using these estimators, we managed to detect LRD in a sample taken with needle electrodes. In contrast, the tools used for the dependence identification on signals achieved with surface electrodes did not yield conclusive results on such dependence.","PeriodicalId":507997,"journal":{"name":"International Journal of Online and Biomedical Engineering (iJOE)","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering (iJOE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v20i07.47373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electromyographic (EMG) signals are biomedical signals that represent neuromuscular activities. The EMG signal is neither stationary nor periodic and exhibits complex interference patterns of several single motor unit action potentials (SMUAPs). This study aims to characterize EMG signals concerning firing patterns and other characteristics and to identify whether these MUAP firing patterns present short-range dependencies (SRD) or long-range dependencies (LRD). To do so, we characterized 208 EMG signals in terms of the number of phases, turns and combinations of phases. Then, we performed a statistical comparison of the (more efficient) Variance-time plot against the (less bias) Log-scale diagram for the estimation of the Hurst parameter and detection of LRD. Using these estimators, we managed to detect LRD in a sample taken with needle electrodes. In contrast, the tools used for the dependence identification on signals achieved with surface electrodes did not yield conclusive results on such dependence.
行动电位和随机点火模式肌电信号依赖性的特征描述与识别
肌电图(EMG)信号是代表神经肌肉活动的生物医学信号。肌电图信号既不是静止的,也不是周期性的,而是由多个单运动单元动作电位(SMUAP)组成的复杂干扰模式。本研究旨在描述肌电信号的点燃模式和其他特征,并确定这些 MUAP 点燃模式是否存在短程依赖性(SRD)或长程依赖性(LRD)。为此,我们对 208 个肌电信号的相位数、转折数和相位组合进行了特征描述。然后,我们对(更有效的)方差-时间图和(偏差较小的)对数尺度图进行了统计比较,以估计赫斯特参数和检测长程依赖性。通过使用这些估算器,我们成功地检测出了使用针电极采集的样本中的 LRD。与此相反,用于识别表面电极信号依赖性的工具并未得出有关这种依赖性的结论性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信