Latent Variable Modeling of Scientific Impact: Estimation of the Q Model Parameters with Structural Equation Models

IF 4.1 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
Boris Forthmann, Steffen Nestler
{"title":"Latent Variable Modeling of Scientific Impact: Estimation of the Q Model Parameters with Structural Equation Models","authors":"Boris Forthmann, Steffen Nestler","doi":"10.1162/qss_a_00313","DOIUrl":null,"url":null,"abstract":"\n Statistical modeling of scientific productivity and impact provides insights into bibliometric measures used also to quantify differences between individual scholars. The Q model decomposes the log-transformed impact of a published paper into a researcher capacity parameter and a random luck parameter. These two parameters are then modeled together with the log-transformed number of published papers (i.e., an indicator of productivity) by means of a trivariate normal distribution. In this work we propose a formulation of the Q model that can be estimated as a structural equation model. The Q model as a structural equation model allows to quantify the reliability of researchers’ Q parameter estimates, it can be extended to incorporate person covariates, and multivariate extensions of the Q model could also be estimated. We empirically illustrate our approach to estimate the Q model and also provide openly available code for R and Mplus.\n \n \n https://www.webofscience.com/api/gateway/wos/peer-review/10.1162/qss_a_00313\n","PeriodicalId":34021,"journal":{"name":"Quantitative Science Studies","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Science Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/qss_a_00313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Statistical modeling of scientific productivity and impact provides insights into bibliometric measures used also to quantify differences between individual scholars. The Q model decomposes the log-transformed impact of a published paper into a researcher capacity parameter and a random luck parameter. These two parameters are then modeled together with the log-transformed number of published papers (i.e., an indicator of productivity) by means of a trivariate normal distribution. In this work we propose a formulation of the Q model that can be estimated as a structural equation model. The Q model as a structural equation model allows to quantify the reliability of researchers’ Q parameter estimates, it can be extended to incorporate person covariates, and multivariate extensions of the Q model could also be estimated. We empirically illustrate our approach to estimate the Q model and also provide openly available code for R and Mplus. https://www.webofscience.com/api/gateway/wos/peer-review/10.1162/qss_a_00313
科学影响力的潜在变量建模:用结构方程模型估计 Q 模型参数
科学生产力和影响力的统计建模为文献计量学提供了深入的见解,也用于量化学者个体之间的差异。Q 模型将已发表论文的对数转换影响力分解为研究人员能力参数和随机运气参数。然后通过三变量正态分布将这两个参数与对数变换后的已发表论文数量(即生产力指标)一起建模。在这项工作中,我们提出了一种可以作为结构方程模型估算的 Q 模型。将 Q 模型作为结构方程模型,可以量化研究人员对 Q 参数估计的可靠性,还可以将其扩展到包含人的协变量,并对 Q 模型的多变量扩展进行估计。我们通过经验说明了我们估计 Q 模型的方法,并提供了 R 和 Mplus 的公开代码。https://www.webofscience.com/api/gateway/wos/peer-review/10.1162/qss_a_00313。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantitative Science Studies
Quantitative Science Studies INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
12.10
自引率
12.50%
发文量
46
审稿时长
22 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信