Gabriela León, Emely López, Hans López, Cesar Hernández
{"title":"Design of an EMG Signal Generator Based on Random Firing Patterns","authors":"Gabriela León, Emely López, Hans López, Cesar Hernández","doi":"10.3991/ijoe.v20i07.47375","DOIUrl":null,"url":null,"abstract":"Electromyographic (EMG) signals exhibit complex interference patterns that comprise several single motor unit action potentials (SMUAPs). Evidence of a model that can generate EMG signals and considers intrinsic characteristics, such as long-range dependence (LRD) or shortrange dependence (SRD), or that supports the study of pathology-related signals is lacking. Therefore, the present study aimed to develop an EMG signal generator based on SRD or LRD derived from firing patterns. We used a dynamic model to parameterize up to 15 SMUAP waveforms of real EMG signals extracted from a database. Then, we used relative appearance rates for some signals based on the number of SMUAPs to generate the latter randomly. Furthermore, we complemented our model by generating a random firing pattern. The synthetic reconstruction of the signals indicated a displacement compared with their respective firing patterns, with the highest error rate being 4.1%. The model of the EMG signal generator in its current state could be useful for a specialist who intends to study the behavior of the signals, starting with the exploration of synthetic signals and then proceeding to the real signals.","PeriodicalId":507997,"journal":{"name":"International Journal of Online and Biomedical Engineering (iJOE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Online and Biomedical Engineering (iJOE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3991/ijoe.v20i07.47375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electromyographic (EMG) signals exhibit complex interference patterns that comprise several single motor unit action potentials (SMUAPs). Evidence of a model that can generate EMG signals and considers intrinsic characteristics, such as long-range dependence (LRD) or shortrange dependence (SRD), or that supports the study of pathology-related signals is lacking. Therefore, the present study aimed to develop an EMG signal generator based on SRD or LRD derived from firing patterns. We used a dynamic model to parameterize up to 15 SMUAP waveforms of real EMG signals extracted from a database. Then, we used relative appearance rates for some signals based on the number of SMUAPs to generate the latter randomly. Furthermore, we complemented our model by generating a random firing pattern. The synthetic reconstruction of the signals indicated a displacement compared with their respective firing patterns, with the highest error rate being 4.1%. The model of the EMG signal generator in its current state could be useful for a specialist who intends to study the behavior of the signals, starting with the exploration of synthetic signals and then proceeding to the real signals.