Subhashis Das, Nirosh M. Eldose, H. Stanchu, Fernando Maia de Oliveira, M. Benamara, Yuriy I. Mazur, Zhong Chen, Alan Mantooth, Gregory J. Salamo
{"title":"Epitaxial growth and characterization of GaAs (111) on 4H-SiC","authors":"Subhashis Das, Nirosh M. Eldose, H. Stanchu, Fernando Maia de Oliveira, M. Benamara, Yuriy I. Mazur, Zhong Chen, Alan Mantooth, Gregory J. Salamo","doi":"10.1116/6.0003454","DOIUrl":null,"url":null,"abstract":"SiC is an indirect bandgap semiconductor with material properties ideal for power electronics but not so much as an optical emitter. Meanwhile, gallium arsenide (GaAs) is a material known for high-performance optical devices due to its direct bandgap and carrier lifetime. Integrating GaAs with silicon carbide (SiC) can result in the best of both materials. However, integrating the two presents a significant challenge due to the large lattice mismatch between the two materials. In this paper, we investigate the growth of high-quality GaAs directly on 4H-SiC and on AlAs/4H-SiC substrates. The thin films were characterized using key techniques for structural and optical analyses, such as x-ray diffraction, atomic force microscopy, and photoluminescence (PL) spectroscopy. The 3D-island nature of growth of GaAs directly on SiC results in weak in-plane correlation with the substrate but high photoluminescence. This was demonstrated with an observed PL intensity comparable to the PL observed from a GaAs substrate with a similar buffer layer. Introduction of a thin AlAs nucleation layer results in improved wetting of the substrate, better in-plane correlation with substrate, and overall improved crystalline quality and is now under further study.","PeriodicalId":170900,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"6 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
SiC is an indirect bandgap semiconductor with material properties ideal for power electronics but not so much as an optical emitter. Meanwhile, gallium arsenide (GaAs) is a material known for high-performance optical devices due to its direct bandgap and carrier lifetime. Integrating GaAs with silicon carbide (SiC) can result in the best of both materials. However, integrating the two presents a significant challenge due to the large lattice mismatch between the two materials. In this paper, we investigate the growth of high-quality GaAs directly on 4H-SiC and on AlAs/4H-SiC substrates. The thin films were characterized using key techniques for structural and optical analyses, such as x-ray diffraction, atomic force microscopy, and photoluminescence (PL) spectroscopy. The 3D-island nature of growth of GaAs directly on SiC results in weak in-plane correlation with the substrate but high photoluminescence. This was demonstrated with an observed PL intensity comparable to the PL observed from a GaAs substrate with a similar buffer layer. Introduction of a thin AlAs nucleation layer results in improved wetting of the substrate, better in-plane correlation with substrate, and overall improved crystalline quality and is now under further study.