Developing interpretable machine learning model for evaluating young modulus of cemented paste backfill

Quoc Trinh Ngo, L. Nguyen, Trung Hieu Vu, Long Khanh Nguyen, Van Quan Tran
{"title":"Developing interpretable machine learning model for evaluating young modulus of cemented paste backfill","authors":"Quoc Trinh Ngo, L. Nguyen, Trung Hieu Vu, Long Khanh Nguyen, Van Quan Tran","doi":"10.3233/jifs-237539","DOIUrl":null,"url":null,"abstract":"Cemented paste backfill (CPB), a mixture of wet tailings, binding agent, and water, proves cost-effective and environmentally beneficial. Determining the Young modulus during CPB mix design is crucial. Utilizing machine learning (ML) tools for Young modulus evaluation and prediction streamlines the CPB mix design process. This study employed six ML models, including three shallow models Extreme Gradient Boosting (XGB), Gradient Boosting (GB), Random Forest (RF) and three hybrids Extreme Gradient Boosting-Particle Swarm Optimization (XGB-PSO), Gradient Boosting-Particle Swarm Optimization (GB-PSO), Random Forest-Particle Swarm Optimization (RF-PSO). The XGB-PSO hybrid model exhibited superior performance (coefficient of determination R2 = 0.906, root mean square error RMSE = 19.535 MPa, mean absolute error MAE = 13.741 MPa) on the testing dataset. Shapley Additive Explanation (SHAP) values and Partial Dependence Plots (PDP) provided insights into component influences. Cement/Tailings ratio emerged as the most crucial factor for enhancing Young modulus in CPB. Global interpretation using SHAP values identified six essential input variables: Cement/Tailings, Curing age, Cc, solid content, Fe2O3 content, and SiO2 content.","PeriodicalId":194936,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"27 45","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-237539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cemented paste backfill (CPB), a mixture of wet tailings, binding agent, and water, proves cost-effective and environmentally beneficial. Determining the Young modulus during CPB mix design is crucial. Utilizing machine learning (ML) tools for Young modulus evaluation and prediction streamlines the CPB mix design process. This study employed six ML models, including three shallow models Extreme Gradient Boosting (XGB), Gradient Boosting (GB), Random Forest (RF) and three hybrids Extreme Gradient Boosting-Particle Swarm Optimization (XGB-PSO), Gradient Boosting-Particle Swarm Optimization (GB-PSO), Random Forest-Particle Swarm Optimization (RF-PSO). The XGB-PSO hybrid model exhibited superior performance (coefficient of determination R2 = 0.906, root mean square error RMSE = 19.535 MPa, mean absolute error MAE = 13.741 MPa) on the testing dataset. Shapley Additive Explanation (SHAP) values and Partial Dependence Plots (PDP) provided insights into component influences. Cement/Tailings ratio emerged as the most crucial factor for enhancing Young modulus in CPB. Global interpretation using SHAP values identified six essential input variables: Cement/Tailings, Curing age, Cc, solid content, Fe2O3 content, and SiO2 content.
开发可解释的机器学习模型,用于评估水泥浆回填土的年轻模量
水泥浆回填(CPB)是湿尾矿、粘结剂和水的混合物,具有成本效益和环境效益。在 CPB 混合设计过程中确定杨模量至关重要。利用机器学习(ML)工具进行杨模量评估和预测可简化 CPB 混合料设计流程。本研究采用了六个 ML 模型,包括三个浅层模型极梯度提升(XGB)、梯度提升(GB)、随机森林(RF)和三个混合模型极梯度提升-粒子群优化(XGB-PSO)、梯度提升-粒子群优化(GB-PSO)、随机森林-粒子群优化(RF-PSO)。XGB-PSO 混合模型在测试数据集上表现出卓越的性能(判定系数 R2 = 0.906,均方根误差 RMSE = 19.535 兆帕,平均绝对误差 MAE = 13.741 兆帕)。Shapley Additive Explanation (SHAP) 值和偏倚图 (PDP) 揭示了成分的影响因素。水泥/尾料比成为提高 CPB 杨氏模量的最关键因素。利用 SHAP 值进行的全局解释确定了六个基本输入变量:水泥/尾料、固化龄期、Cc、固体含量、Fe2O3 含量和 SiO2 含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信