Thurston’s asymmetric metric on the space of singular flat metrics with a fixed quadrangulation

İsmail Sağlam, A. Papadopoulos
{"title":"Thurston’s asymmetric metric on the space of singular flat metrics with a fixed quadrangulation","authors":"İsmail Sağlam, A. Papadopoulos","doi":"10.4171/lem/1060","DOIUrl":null,"url":null,"abstract":"Consider a compact surface equipped with a fixed quadrangulation. One may identify each quadrangle on the surface by a Euclidean rect-angle to obtain a singular flat metric on the surface with conical singularities. We call such a singular flat metric a rectangular structure. We study a metric on the space of unit area rectangular structures which is analogous to Thurston’s asymmetric metric on the Teichm¨uller space of a surface of finite type. We prove that the distance between two rectangular structures is equal to the logarithm of the maximum of ratios of edges of these rectangular structures. We give a sufficient condition for a path between two points of the this Teichm¨uller space to be geodesic and we prove that any two points of the space can be joined by a geodesic. We also prove that this metric is Finsler and give a formula for the infinitesimal weak norm at the tangent space of each point. We identify the space of unit area rectangular structures with a submanifold of a Euclidean space and we show that the sub-space topology and the topology induced by the metric we introduced coincide. We show that the space of unit area rectangular structures on a surface with a fixed quadrangulation is in general not complete.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"18 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/lem/1060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Consider a compact surface equipped with a fixed quadrangulation. One may identify each quadrangle on the surface by a Euclidean rect-angle to obtain a singular flat metric on the surface with conical singularities. We call such a singular flat metric a rectangular structure. We study a metric on the space of unit area rectangular structures which is analogous to Thurston’s asymmetric metric on the Teichm¨uller space of a surface of finite type. We prove that the distance between two rectangular structures is equal to the logarithm of the maximum of ratios of edges of these rectangular structures. We give a sufficient condition for a path between two points of the this Teichm¨uller space to be geodesic and we prove that any two points of the space can be joined by a geodesic. We also prove that this metric is Finsler and give a formula for the infinitesimal weak norm at the tangent space of each point. We identify the space of unit area rectangular structures with a submanifold of a Euclidean space and we show that the sub-space topology and the topology induced by the metric we introduced coincide. We show that the space of unit area rectangular structures on a surface with a fixed quadrangulation is in general not complete.
奇异平面度量空间上的瑟斯顿非对称度量与固定四分法
考虑一个具有固定四角形的紧凑曲面。我们可以用一个欧几里得矩形来标识曲面上的每个四边形,从而得到曲面上的奇异飞行度量,该度量具有圆锥奇点。我们称这样的奇点 flat 度量为矩形结构。我们研究了单位面积矩形结构空间上的度量,它类似于瑟尔斯顿在有限型曲面的泰希姆乌勒空间上的非对称度量。我们证明了两个矩形结构之间的距离等于这些矩形结构的边比最大值的对数。我们给出了该 Teichm¨uller 空间两点间路径为大地线的必要条件,并证明该空间的任意两点都可以通过大地线连接。我们还证明了这个度量是芬斯勒度量,并给出了每个点切线空间的最小弱规范公式。我们将单位面积矩形结构空间与欧几里得空间的子空间相提并论,并证明子空间拓扑与我们引入的度量所诱导的拓扑是重合的。我们证明了在一个具有固定四边形的表面上的单位面积矩形结构空间一般是不完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信