{"title":"Hybrid Inductive Graph Method for Matrix Completion","authors":"Jayun Yong, Chulyun Kim","doi":"10.4018/ijdwm.345361","DOIUrl":null,"url":null,"abstract":"The recommender system can be viewed as a matrix completion problem, which aims to predict unknown values within a matrix. Solutions to this problem are categorized into two approaches: transductive and inductive reasoning. In transductive reasoning, the model cannot be applied to new cases unseen during training. In contrast, IGMC, the state-of-the-art inductive algorithm, only requires subgraphs for target users and items, without needing any other content information. While the absence of a requirement for content information simplifies the model and enhances transferability to new tasks, incorporating content information could still improve the model's performance. In this article, the authors introduce Hi-GMC, a hybrid version of the IGMC model that incorporates content information alongside users and items. They present a novel graph model to encapsulate the side information related to users and items and develop a learning method based on graph neural networks. This proposed method achieves state-of-the-art performance on the MovieLens-100K dataset for both warm and cold start scenarios.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.345361","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The recommender system can be viewed as a matrix completion problem, which aims to predict unknown values within a matrix. Solutions to this problem are categorized into two approaches: transductive and inductive reasoning. In transductive reasoning, the model cannot be applied to new cases unseen during training. In contrast, IGMC, the state-of-the-art inductive algorithm, only requires subgraphs for target users and items, without needing any other content information. While the absence of a requirement for content information simplifies the model and enhances transferability to new tasks, incorporating content information could still improve the model's performance. In this article, the authors introduce Hi-GMC, a hybrid version of the IGMC model that incorporates content information alongside users and items. They present a novel graph model to encapsulate the side information related to users and items and develop a learning method based on graph neural networks. This proposed method achieves state-of-the-art performance on the MovieLens-100K dataset for both warm and cold start scenarios.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving