Simulating CO2 diffusivity in rigid and flexible Mg-MOF-74 with machine-learning force fields

Bowen Zheng, Grace X. Gu, Carine Ribeiro dos Santos, Rodrigo Neumann Barros Ferreira, Mathias Steiner, Binquan Luan
{"title":"Simulating CO2 diffusivity in rigid and flexible Mg-MOF-74 with machine-learning force fields","authors":"Bowen Zheng, Grace X. Gu, Carine Ribeiro dos Santos, Rodrigo Neumann Barros Ferreira, Mathias Steiner, Binquan Luan","doi":"10.1063/5.0190372","DOIUrl":null,"url":null,"abstract":"The flexibility of metal–organic frameworks (MOFs) affects their gas adsorption and diffusion properties. However, reliable force fields for simulating flexible MOFs are lacking. As a result, most atomistic simulations so far have been carried out assuming rigid MOFs, which inevitably overestimates the gas adsorption energy. Here, we show that this issue can be addressed by applying a machine-learning potential, trained on quantum chemistry data, to atomistic simulations. We find that inclusion of flexibility is particularly important for simulating CO2 chemisorption in MOFs with coordinatively unsaturated metal sites. Specifically, we demonstrate that the diffusion of CO2 in a flexible Mg-MOF-74 structure is about one order of magnitude faster than in a rigid one, challenging the rigid-MOF assumption in previous simulations.","PeriodicalId":502250,"journal":{"name":"APL Machine Learning","volume":"96 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0190372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The flexibility of metal–organic frameworks (MOFs) affects their gas adsorption and diffusion properties. However, reliable force fields for simulating flexible MOFs are lacking. As a result, most atomistic simulations so far have been carried out assuming rigid MOFs, which inevitably overestimates the gas adsorption energy. Here, we show that this issue can be addressed by applying a machine-learning potential, trained on quantum chemistry data, to atomistic simulations. We find that inclusion of flexibility is particularly important for simulating CO2 chemisorption in MOFs with coordinatively unsaturated metal sites. Specifically, we demonstrate that the diffusion of CO2 in a flexible Mg-MOF-74 structure is about one order of magnitude faster than in a rigid one, challenging the rigid-MOF assumption in previous simulations.
利用机器学习力场模拟刚性和柔性 Mg-MOF-74 中的二氧化碳扩散性
金属有机框架(MOFs)的柔性会影响其气体吸附和扩散特性。然而,目前还缺乏用于模拟柔性 MOF 的可靠力场。因此,迄今为止大多数原子模拟都是在假定 MOFs 具有刚性的情况下进行的,这就不可避免地高估了气体吸附能。在此,我们展示了通过量子化学数据训练的机器学习势能在原子模拟中的应用可以解决这一问题。我们发现,在具有配位不饱和金属位点的 MOFs 中模拟二氧化碳化学吸附时,加入灵活性尤为重要。具体来说,我们证明了二氧化碳在柔性 Mg-MOF-74 结构中的扩散速度比在刚性结构中快约一个数量级,这对之前模拟中的刚性-MOF 假设提出了挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信