{"title":"RGB-D road segmentation based on cross-modality feature maintenance and encouragement","authors":"Xia Yuan, Xinyi Wu, Yanchao Cui, Chunxia Zhao","doi":"10.1049/itr2.12515","DOIUrl":null,"url":null,"abstract":"<p>Deep images can provide rich spatial structure information, which can effectively exclude the interference of illumination and road texture in road scene segmentation and make better use of the prior knowledge of road area. This paper first proposes a new cross-modal feature maintenance and encouragement network. It includes a quantization statistics module as well as a maintenance and encouragement module for effective fusion between multimodal data. Meanwhile, for the problem that if the road segmentation is performed directly using a segmentation network, there will be a lack of supervised guidance with clear physical meaningful information and poor interpretability of learning features, this paper proposes two road segmentation models based on prior knowledge of deep image: disparity information and surface normal vector information. Then, a two-branch neural network is used to process the colour image and the processed depth image separately, to achieve the full utilization of the complementary features of the two modalities. The experimental results on the KITTI road dataset and Cityscapes dataset show that the method in this paper has good road segmentation performance and high computational efficiency.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 7","pages":"1355-1368"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12515","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12515","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Deep images can provide rich spatial structure information, which can effectively exclude the interference of illumination and road texture in road scene segmentation and make better use of the prior knowledge of road area. This paper first proposes a new cross-modal feature maintenance and encouragement network. It includes a quantization statistics module as well as a maintenance and encouragement module for effective fusion between multimodal data. Meanwhile, for the problem that if the road segmentation is performed directly using a segmentation network, there will be a lack of supervised guidance with clear physical meaningful information and poor interpretability of learning features, this paper proposes two road segmentation models based on prior knowledge of deep image: disparity information and surface normal vector information. Then, a two-branch neural network is used to process the colour image and the processed depth image separately, to achieve the full utilization of the complementary features of the two modalities. The experimental results on the KITTI road dataset and Cityscapes dataset show that the method in this paper has good road segmentation performance and high computational efficiency.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf