Fermion quadrature bases for Wigner functionals

F. S. Roux
{"title":"Fermion quadrature bases for Wigner functionals","authors":"F. S. Roux","doi":"10.1088/1751-8121/ad483b","DOIUrl":null,"url":null,"abstract":"\n A Grassmann functional phase space is formulated for the definition of fermionic Wigner functionals by identifying suitable fermionic operators that are analogues to boson quadrature operators. Instead of the Majorana operators, we use operators that are defined with relative spin transformations between the ladder operators. The eigenstates of these operators are shown to provide orthogonal bases, provided that the dual space is defined with the incorporation of a spin transformation. These bases then serve as quadrature bases in terms of which Wigner functionals are defined in a way equivalent to the bosonic case. As an application, we consider a two-level fermion system.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"128 s1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad483b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Grassmann functional phase space is formulated for the definition of fermionic Wigner functionals by identifying suitable fermionic operators that are analogues to boson quadrature operators. Instead of the Majorana operators, we use operators that are defined with relative spin transformations between the ladder operators. The eigenstates of these operators are shown to provide orthogonal bases, provided that the dual space is defined with the incorporation of a spin transformation. These bases then serve as quadrature bases in terms of which Wigner functionals are defined in a way equivalent to the bosonic case. As an application, we consider a two-level fermion system.
维格纳函数的费米子正交基础
通过确定与玻色子正交算子类似的合适费米子算子,为费米子维格纳函数的定义制定了格拉斯曼函数相空间。我们用梯形算子之间的相对自旋变换来定义算子,而不是马约拉纳算子。只要在对偶空间中加入自旋变换,这些算子的特征态就能提供正交基。然后,这些基作为正交基,以等同于玻色情况的方式定义 Wigner 函数。作为应用,我们考虑了一个两级费米子系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信