Tunable deformation design of porous Al2O3 based on the Direct FE2 method

Ang Zhao, Kui Liu, Pei Li, Yehui Cui
{"title":"Tunable deformation design of porous Al2O3 based on the Direct FE2 method","authors":"Ang Zhao, Kui Liu, Pei Li, Yehui Cui","doi":"10.1088/1361-651x/ad489f","DOIUrl":null,"url":null,"abstract":"\n The tunable deformation design of porous ceramics has raised many interests in many engineering and manufacturing fields, where its corresponding design methodologies still suffer from the lower efficiency and higher computational cost. To handle this problem, a novel optimization and design methodology based on the Direct FE2 method has been proposed in this study, and several numerical examples of the porous Al2O3 tunable deformation design has been performed by this novel methodology. Compared with the traditional methodologies, the proposed method is more convenient to conduct the tunable deformation design and improves the optimization efficiency. Based on this method, the distribution and assembly of the microscale RVE could be tailored along the space dimension to handle the sinusoidal deformation and variable Poisson’s ratio ceramic design at the macroscale. By comparing the simulation results with the Direct Numerical Simulation (DNS) model, the effectiveness and accuracy of this methodology is well validated. Meanwhile, the simulation results based on the proposed methodology found that the predictability of porous Al2O3 deformation could be enhanced by changing the micro structure parameters such as the elliptical hole angle and aspect ratio. This methodology holds great potential for applications in the design and optimization of porous ceramics with tailored deformation characteristics.","PeriodicalId":503047,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad489f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The tunable deformation design of porous ceramics has raised many interests in many engineering and manufacturing fields, where its corresponding design methodologies still suffer from the lower efficiency and higher computational cost. To handle this problem, a novel optimization and design methodology based on the Direct FE2 method has been proposed in this study, and several numerical examples of the porous Al2O3 tunable deformation design has been performed by this novel methodology. Compared with the traditional methodologies, the proposed method is more convenient to conduct the tunable deformation design and improves the optimization efficiency. Based on this method, the distribution and assembly of the microscale RVE could be tailored along the space dimension to handle the sinusoidal deformation and variable Poisson’s ratio ceramic design at the macroscale. By comparing the simulation results with the Direct Numerical Simulation (DNS) model, the effectiveness and accuracy of this methodology is well validated. Meanwhile, the simulation results based on the proposed methodology found that the predictability of porous Al2O3 deformation could be enhanced by changing the micro structure parameters such as the elliptical hole angle and aspect ratio. This methodology holds great potential for applications in the design and optimization of porous ceramics with tailored deformation characteristics.
基于直接 FE2 方法的多孔 Al2O3 可调变形设计
多孔陶瓷的可调变形设计在许多工程和制造领域引起了广泛关注,但其相应的设计方法仍存在效率较低、计算成本较高等问题。针对这一问题,本研究提出了一种基于直接 FE2 方法的新型优化和设计方法,并利用这种新型方法对多孔 Al2O3 可调变形设计进行了多次数值计算。与传统方法相比,所提出的方法更便于进行可调变形设计,并提高了优化效率。基于该方法,微尺度 RVE 的分布和装配可沿空间维度进行定制,以处理宏观尺度的正弦形变和可变泊松比陶瓷设计。通过将模拟结果与直接数值模拟(DNS)模型进行比较,该方法的有效性和准确性得到了很好的验证。同时,基于所提方法的模拟结果发现,通过改变椭圆孔角度和长宽比等微观结构参数,可以提高多孔 Al2O3 变形的可预测性。该方法在设计和优化具有定制变形特性的多孔陶瓷方面具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信