Applying Machine Learning to Survey Question Assessment

Ting Yan, Hanyu Sun, Anil Battalahalli
{"title":"Applying Machine Learning to Survey Question Assessment","authors":"Ting Yan, Hanyu Sun, Anil Battalahalli","doi":"10.29115/sp-2024-0006","DOIUrl":null,"url":null,"abstract":"Sun and Yan (2023) described a Computer-Assisted Recorded Interviewing (CARI) Machine Learning (ML) pipeline that efficiently processes 100% of recorded interviews as quickly as possible and as inexpensively as possible. The CARI ML pipeline leads to automatic identification of recordings that are at a higher risk of being falsified or exhibiting undesirable interviewer behaviors. This paper describes an extension to the pipeline that can be used to automatically detect survey questions at a higher risk of poor performance. A proof-of-concept study was conducted and showed that the enhanced pipeline was able to detect worst performing items judged by experts. The results demonstrated the potential of the enhanced pipeline to screen and select problematic items for conventional behavior coding and to improve the efficiency of using CARI for question evaluation and testing.","PeriodicalId":74893,"journal":{"name":"Survey practice","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29115/sp-2024-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sun and Yan (2023) described a Computer-Assisted Recorded Interviewing (CARI) Machine Learning (ML) pipeline that efficiently processes 100% of recorded interviews as quickly as possible and as inexpensively as possible. The CARI ML pipeline leads to automatic identification of recordings that are at a higher risk of being falsified or exhibiting undesirable interviewer behaviors. This paper describes an extension to the pipeline that can be used to automatically detect survey questions at a higher risk of poor performance. A proof-of-concept study was conducted and showed that the enhanced pipeline was able to detect worst performing items judged by experts. The results demonstrated the potential of the enhanced pipeline to screen and select problematic items for conventional behavior coding and to improve the efficiency of using CARI for question evaluation and testing.
将机器学习应用于调查问题评估
Sun 和 Yan(2023 年)描述了一种计算机辅助录音访谈(CARI)机器学习(ML)管道,它能以尽可能快的速度和尽可能低的成本高效处理 100% 的录音访谈。CARI 机器学习流水线可自动识别伪造风险较高或表现出不良访谈者行为的录音。本文介绍了该管道的扩展功能,可用于自动检测表现不佳风险较高的调查问题。我们进行了一项概念验证研究,结果表明增强管道能够检测出专家判断的表现最差的问题。结果表明,增强型管道具有筛选和选择问题项目进行传统行为编码的潜力,并能提高使用 CARI 进行问题评估和测试的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信