Planar Graphs without Cycles of Length 3, 4, and 6 are (3, 3)-Colorable

Pongpat Sittitrai, W. Pimpasalee
{"title":"Planar Graphs without Cycles of Length 3, 4, and 6 are (3, 3)-Colorable","authors":"Pongpat Sittitrai, W. Pimpasalee","doi":"10.1155/2024/7884281","DOIUrl":null,"url":null,"abstract":"<jats:p>For non-negative integers <jats:inline-formula><a:math xmlns:a=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"><a:msub><a:mrow><a:mi>d</a:mi></a:mrow><a:mrow><a:mn>1</a:mn></a:mrow></a:msub></a:math></jats:inline-formula> and <jats:inline-formula><c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"><c:msub><c:mrow><c:mi>d</c:mi></c:mrow><c:mrow><c:mn>2</c:mn></c:mrow></c:msub></c:math></jats:inline-formula>, if <jats:inline-formula><e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"><e:msub><e:mrow><e:mi>V</e:mi></e:mrow><e:mrow><e:mn>1</e:mn></e:mrow></e:msub></e:math></jats:inline-formula> and <jats:inline-formula><g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"><g:msub><g:mrow><g:mi>V</g:mi></g:mrow><g:mrow><g:mn>2</g:mn></g:mrow></g:msub></g:math></jats:inline-formula> are two partitions of a graph <jats:inline-formula><i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"><i:mi>G</i:mi></i:math></jats:inline-formula>’s vertex set <jats:inline-formula><k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\"><k:mi>V</k:mi><k:mfenced open=\"(\" close=\")\" separators=\"|\"><k:mrow><k:mi>G</k:mi></k:mrow></k:mfenced></k:math></jats:inline-formula>, such that <jats:inline-formula><p:math xmlns:p=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\"><p:msub><p:mrow><p:mi>V</p:mi></p:mrow><p:mrow><p:mn>1</p:mn></p:mrow></p:msub></p:math></jats:inline-formula> and <jats:inline-formula><r:math xmlns:r=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\"><r:msub><r:mrow><r:mi>V</r:mi></r:mrow><r:mrow><r:mn>2</r:mn></r:mrow></r:msub></r:math></jats:inline-formula> induce two subgraphs of <jats:inline-formula><t:math xmlns:t=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\"><t:mi>G</t:mi></t:math></jats:inline-formula>, called <jats:inline-formula><v:math xmlns:v=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\"><v:mi>G</v:mi><v:mfenced open=\"[\" close=\"]\" separators=\"|\"><v:mrow><v:msub><v:mrow><v:mi>V</v:mi></v:mrow><v:mrow><v:mn>1</v:mn></v:mrow></v:msub></v:mrow></v:mfenced></v:math></jats:inline-formula> with maximum degree at most <jats:inline-formula><ab:math xmlns:ab=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\"><ab:msub><ab:mrow><ab:mi>d</ab:mi></ab:mrow><ab:mrow><ab:mn>1</ab:mn></ab:mrow></ab:msub></ab:math></jats:inline-formula> and <jats:inline-formula><cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" id=\"M12\"><cb:mi>G</cb:mi><cb:mfenced open=\"[\" close=\"]\" separators=\"|\"><cb:mrow><cb:msub><cb:mrow><cb:mi>V</cb:mi></cb:mrow><cb:mrow><cb:mn>2</cb:mn></cb:mrow></cb:msub></cb:mrow></cb:mfenced></cb:math></jats:inline-formula> with maximum degree at most <jats:inline-formula><hb:math xmlns:hb=\"http://www.w3.org/1998/Math/MathML\" id=\"M13\"><hb:msub><hb:mrow><hb:mi>d</hb:mi></hb:mrow><hb:mrow><hb:mn>2</hb:mn></hb:mrow></hb:msub></hb:math></jats:inline-formula>, respectively, then the graph <jats:inline-formula><jb:math xmlns:jb=\"http://www.w3.org/1998/Math/MathML\" id=\"M14\"><jb:mi>G</jb:mi></jb:math></jats:inline-formula> is said to be improper <jats:inline-formula><lb:math xmlns:lb=\"http://www.w3.org/1998/Math/MathML\" id=\"M15\"><lb:mfenced open=\"(\" close=\")\" separators=\"|\"><lb:mrow><lb:msub><lb:mrow><lb:mi>d</lb:mi></lb:mrow><lb:mrow><lb:mn>1</lb:mn></lb:mrow></lb:msub><lb:mo>,</lb:mo><lb:msub><lb:mrow><lb:mi>d</lb:mi></lb:mrow><lb:mrow><lb:mn>2</lb:mn></lb:mrow></lb:msub></lb:mrow></lb:mfenced></lb:math></jats:inline-formula>-colorable, as well as <jats:inline-formula><qb:math xmlns:qb=\"http://www.w3.org/1998/Math/MathML\" id=\"M16\"><qb:mfenced open=\"(\" close=\")\" separators=\"|\"><qb:mrow><qb:msub><qb:mrow><qb:mi>d</qb:mi></qb:mrow><qb:mrow><qb:mn>1</qb:mn></qb:mrow></qb:msub><qb:mo>,</qb:mo><qb:msub><qb:mrow><qb:mi>d</qb:mi></qb:mrow><qb:mrow><qb:mn>2</qb:mn></qb:mrow></qb:msub></qb:mrow></qb:mfenced></qb:math></jats:inline-formula>-colorable. A class of planar graphs without <jats:inline-formula><vb:math xmlns:vb=\"http://www.w3.org/1998/Math/MathML\" id=\"M17\"><vb:msub><vb:mrow><vb:mi>C</vb:mi></vb:mrow><vb:mrow><vb:mn>3</vb:mn></vb:mrow></vb:msub><vb:mo>,</vb:mo><vb:msub><vb:mrow><vb:mi>C</vb:mi></vb:mrow><vb:mrow><vb:mn>4</vb:mn></vb:mrow></vb:msub></vb:math></jats:inline-formula>, and <jats:inline-formula><xb:math xmlns:xb=\"http://www.w3.org/1998/Math/MathML\" id=\"M18\"><xb:msub><xb:mrow><xb:mi>C</xb:mi></xb:mrow><xb:mrow><xb:mn>6</xb:mn></xb:mrow></xb:msub></xb:math></jats:inline-formula> is denoted by <jats:inline-formula><zb:math xmlns:zb=\"http://www.w3.org/1998/Math/MathML\" id=\"M19\"><zb:mi mathvariant=\"script\">C</zb:mi></zb:math></jats:inline-formula>. In 2019, Dross and Ochem proved that <jats:inline-formula><cc:math xmlns:cc=\"http://www.w3.org/1998/Math/MathML\" id=\"M20\"><cc:mi>G</cc:mi></cc:math></jats:inline-formula> is <jats:inline-formula><ec:math xmlns:ec=\"http://www.w3.org/1998/Math/MathML\" id=\"M21\"><ec:mfenced open=\"(\" close=\")\" separators=\"|\"><ec:mrow><ec:mn>0</ec:mn><ec:mo>,</ec:mo><ec:mn>6</ec:mn></ec:mrow></ec:mfenced></ec:math></jats:inline-formula>-colorable, for each graph <jats:inline-formula><jc:math xmlns:jc=\"http://www.w3.org/1998/Math/MathML\" id=\"M22\"><jc:mi>G</jc:mi></jc:math></jats:inline-formula> in <jats:inline-formula><lc:math xmlns:lc=\"http://www.w3.org/1998/Math/MathML\" id=\"M23\"><lc:mi mathvariant=\"script\">C</lc:mi></lc:math></jats:inline-formula>. Given that <jats:inline-formula><oc:math xmlns:oc=\"http://www.w3.org/1998/Math/MathML\" id=\"M24\"><oc:msub><oc:mrow><oc:mi>d</oc:mi></oc:mrow><oc:mrow><oc:mn>1</oc:mn></oc:mrow></oc:msub><oc:mo>+</oc:mo><oc:msub><oc:mrow><oc:mi>d</oc:mi></oc:mrow><oc:mrow><oc:mn>2</oc:mn></oc:mrow></oc:msub><oc:mo>≥</oc:mo><oc:mn>6</oc:mn></oc:math></jats:inline-formula>, this inspires us to investigate whether <jats:inline-formula><qc:math xmlns:qc=\"http://www.w3.org/1998/Math/MathML\" id=\"M25\"><qc:mi>G</qc:mi></qc:math></jats:inline-formula> is <jats:inline-formula><sc:math xmlns:sc=\"http://www.w3.org/1998/Math/MathML\" id=\"M26\"><sc:mfenced open=\"(\" close=\")\" separators=\"|\"><sc:mrow><sc:msub><sc:mrow><sc:mi>d</sc:mi></sc:mrow><sc:mrow><sc:mn>1</sc:mn></sc:mrow></sc:msub><sc:mo>,</sc:mo><sc:msub><sc:mrow><sc:mi>d</sc:mi></sc:mrow><sc:mrow><sc:mn>2</sc:mn></sc:mrow></sc:msub></sc:mrow></sc:mfenced></sc:math></jats:inline-formula>-colorable, for each graph <jats:inline-formula><xc:math xmlns:xc=\"http://www.w3.org/1998/Math/MathML\" id=\"M27\"><xc:mi>G</xc:mi></xc:math></jats:inline-formula> in <jats:inline-formula><zc:math xmlns:zc=\"http://www.w3.org/1998/Math/MathML\" id=\"M28\"><zc:mi mathvariant=\"script\">C</zc:mi></zc:math></jats:inline-formula>. In this paper, we provide a partial solution by showing that <jats:inline-formula><cd:math xmlns:cd=\"http://www.w3.org/1998/Math/MathML\" id=\"M29\"><cd:mi>G</cd:mi></cd:math></jats:inline-formula> is (3, 3)-colorable, for each graph <jats:inline-formula><ed:math xmlns:ed=\"http://www.w3.org/1998/Math/MathML\" id=\"M30\"><ed:mi>G</ed:mi></ed:math></jats:inline-formula> in <jats:inline-formula><gd:math xmlns:gd=\"http://www.w3.org/1998/Math/MathML\" id=\"M31\"><gd:mi mathvariant=\"script\">C</gd:mi></gd:math></jats:inline-formula>.</jats:p>","PeriodicalId":509297,"journal":{"name":"International Journal of Mathematics and Mathematical Sciences","volume":" 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/7884281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For non-negative integers d1 and d2, if V1 and V2 are two partitions of a graph G’s vertex set VG, such that V1 and V2 induce two subgraphs of G, called GV1 with maximum degree at most d1 and GV2 with maximum degree at most d2, respectively, then the graph G is said to be improper d1,d2-colorable, as well as d1,d2-colorable. A class of planar graphs without C3,C4, and C6 is denoted by C. In 2019, Dross and Ochem proved that G is 0,6-colorable, for each graph G in C. Given that d1+d26, this inspires us to investigate whether G is d1,d2-colorable, for each graph G in C. In this paper, we provide a partial solution by showing that G is (3, 3)-colorable, for each graph G in C.
长度为 3、4 和 6 的无循环平面图是 (3, 3) 可着色的
对于非负整数 d1 和 d2,如果 V1 和 V2 是图 G 的顶点集 VG 的两个分区,使得 V1 和 V2 分别诱导出 G 的两个子图,称为最大阶数至多为 d1 的 GV1 和最大阶数至多为 d2 的 GV2,则称该图 G 为不正当 d1,d2-colorable 以及 d1,d2-colorable 图。2019年,Dross和Ochem证明了对于C中的每个图G,G都是0,6-可着色的。鉴于d1+d2≥6,这启发我们研究对于C中的每个图G,G是否都是d1,d2-可着色的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信