Bi-Frobenius Algebra Structures on Quantum Complete Intersections

IF 0.8 3区 数学 Q2 MATHEMATICS
Hai Jin, Pu Zhang
{"title":"Bi-Frobenius Algebra Structures on Quantum Complete Intersections","authors":"Hai Jin,&nbsp;Pu Zhang","doi":"10.1007/s10114-024-2370-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is to look for bi-Frobenius algebra structures on quantum complete intersections over field <i>k</i>. We find a class of comultiplications, such that if <span>\\(\\sqrt{-1}\\in k\\)</span>, then a quantum complete intersection becomes a bi-Frobenius algebra with comultiplication of this form if and only if all the parameters <i>q</i><sub><i>ij</i></sub> = ±1. Also, it is proved that if <span>\\(\\sqrt{-1}\\in k\\)</span> then a quantum exterior algebra in two variables admits a bi-Frobenius algebra structure if and only if the parameter <i>q</i> = ±1. While if <span>\\(\\sqrt{-1}\\notin k\\)</span>, then the exterior algebra with two variables admits no bi-Frobenius algebra structures. We prove that the quantum complete intersections admit a bialgebra structure if and only if it admits a Hopf algebra structure, if and only if it is commutative, the characteristic of <i>k</i> is a prime <i>p</i>, and every <i>a</i><sub><i>i</i></sub> a power of <i>p</i>. This also provides a large class of examples of bi-Frobenius algebras which are not bialgebras (and hence not Hopf algebras). In commutative case, other two comultiplications on complete intersection rings are given, such that they admit non-isomorphic bi-Frobenius algebra structures.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 6","pages":"1481 - 1504"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2370-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is to look for bi-Frobenius algebra structures on quantum complete intersections over field k. We find a class of comultiplications, such that if \(\sqrt{-1}\in k\), then a quantum complete intersection becomes a bi-Frobenius algebra with comultiplication of this form if and only if all the parameters qij = ±1. Also, it is proved that if \(\sqrt{-1}\in k\) then a quantum exterior algebra in two variables admits a bi-Frobenius algebra structure if and only if the parameter q = ±1. While if \(\sqrt{-1}\notin k\), then the exterior algebra with two variables admits no bi-Frobenius algebra structures. We prove that the quantum complete intersections admit a bialgebra structure if and only if it admits a Hopf algebra structure, if and only if it is commutative, the characteristic of k is a prime p, and every ai a power of p. This also provides a large class of examples of bi-Frobenius algebras which are not bialgebras (and hence not Hopf algebras). In commutative case, other two comultiplications on complete intersection rings are given, such that they admit non-isomorphic bi-Frobenius algebra structures.

量子完全交叉上的双弗罗贝纽斯代数结构
我们发现了一类乘法,即如果 \(\sqrt{-1}\in k\), 那么当且仅当所有参数 qij = ±1 时,一个量子完全交集成为具有这种形式乘法的双弗罗贝尼乌斯代数。同时,我们还证明了,如果(\sqrt{-1}\in k\ ),那么当且仅当参数 q = ±1 时,一个两变量的量子外部代数会接纳双弗罗贝纽斯代数结构。我们证明,当且仅当它是交换式的,k 的特征是质数 p,并且每个 ai 都是 p 的幂时,量子完全交集才承认一个双代数结构;这也提供了一大类不是双代数(因而也不是 Hopf 代数)的双弗罗贝纽斯代数的例子。在交换情况下,给出了完全交集环上的其他两个乘法,从而使它们承认非同构的双弗罗贝纽斯代数结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信