Remote Sensing Crop Water Stress Determination Using CNN-ViT Architecture

AI Pub Date : 2024-05-09 DOI:10.3390/ai5020033
Kawtar Lehouel, Chaima Saber, Mourad Bouziani, Reda Yaagoubi
{"title":"Remote Sensing Crop Water Stress Determination Using CNN-ViT Architecture","authors":"Kawtar Lehouel, Chaima Saber, Mourad Bouziani, Reda Yaagoubi","doi":"10.3390/ai5020033","DOIUrl":null,"url":null,"abstract":"Efficiently determining crop water stress is vital for optimising irrigation practices and enhancing agricultural productivity. In this realm, the synergy of deep learning with remote sensing technologies offers a significant opportunity. This study introduces an innovative end-to-end deep learning pipeline for within-field crop water determination. This involves the following: (1) creating an annotated dataset for crop water stress using Landsat 8 imagery, (2) deploying a standalone vision transformer model ViT, and (3) the implementation of a proposed CNN-ViT model. This approach allows for a comparative analysis between the two architectures, ViT and CNN-ViT, in accurately determining crop water stress. The results of our study demonstrate the effectiveness of the CNN-ViT framework compared to the standalone vision transformer model. The CNN-ViT approach exhibits superior performance, highlighting its enhanced accuracy and generalisation capabilities. The findings underscore the significance of an integrated deep learning pipeline combined with remote sensing data in the determination of crop water stress, providing a reliable and scalable tool for real-time monitoring and resource management contributing to sustainable agricultural practices.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ai5020033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficiently determining crop water stress is vital for optimising irrigation practices and enhancing agricultural productivity. In this realm, the synergy of deep learning with remote sensing technologies offers a significant opportunity. This study introduces an innovative end-to-end deep learning pipeline for within-field crop water determination. This involves the following: (1) creating an annotated dataset for crop water stress using Landsat 8 imagery, (2) deploying a standalone vision transformer model ViT, and (3) the implementation of a proposed CNN-ViT model. This approach allows for a comparative analysis between the two architectures, ViT and CNN-ViT, in accurately determining crop water stress. The results of our study demonstrate the effectiveness of the CNN-ViT framework compared to the standalone vision transformer model. The CNN-ViT approach exhibits superior performance, highlighting its enhanced accuracy and generalisation capabilities. The findings underscore the significance of an integrated deep learning pipeline combined with remote sensing data in the determination of crop water stress, providing a reliable and scalable tool for real-time monitoring and resource management contributing to sustainable agricultural practices.
利用 CNN-ViT 架构进行作物水分胁迫遥感测定
有效确定作物水分胁迫对于优化灌溉方法和提高农业生产力至关重要。在这一领域,深度学习与遥感技术的协同作用提供了重大机遇。本研究介绍了一种创新的端到端深度学习管道,用于田间作物水分测定。这包括以下内容:(1) 利用大地遥感卫星 8 号图像创建作物水分胁迫注释数据集,(2) 部署独立的视觉转换器模型 ViT,(3) 实施建议的 CNN-ViT 模型。通过这种方法,可以对 ViT 和 CNN-ViT 这两种架构在准确确定作物水分胁迫方面的效果进行比较分析。我们的研究结果表明,与独立的视觉转换器模型相比,CNN-ViT 框架非常有效。CNN-ViT 方法表现出卓越的性能,凸显了其更高的准确性和泛化能力。研究结果强调了集成深度学习管道与遥感数据相结合在确定作物水分胁迫方面的重要性,为实时监测和资源管理提供了可靠、可扩展的工具,有助于可持续农业实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AI
AI
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信