{"title":"The Effect of Furrow Opener and Disc Coulter Configurations on Seeding Performance under Different Residue Cover Densities","authors":"D. Karayel, Eglė Jotautienė, E. Šarauskis","doi":"10.3390/agriengineering6020073","DOIUrl":null,"url":null,"abstract":"The performance of the no-till seeder is one of the most important factors that affect the success of the no-tillage. Striking the right balance between furrow opener design and residue cover is essential for optimizing seeding conditions and ensuring sustainable agricultural practices that promote both soil conservation and high-yield crop production. This study investigates the impact of residue cover on no-tillage maize seeding after wheat harvest, focusing on plant spacing, seeding depth, mean emergence time, and percent emergence. Trials with hoe-type and double-disc-type furrow openers, accompanied by plain- or ripple-disc-type coulters, were conducted in Antalya, Turkey. The results indicate that residue cover had no significant effect on mean plant spacing, but a higher residue cover increased spacing variation. The seeding depth in hoe-type furrow opener trials remained consistent, while double-disc-type furrow openers showed lower depths with 80% and 90% residue covers. The percentage of plant emergence and mean emergence time decreased as the residue cover increased in double-disc-type furrow opener trials. At 90% residue cover, PE decreased to 60%. The impact of disc coulters on hoe-type furrow openers was limited, but they increased seeding depth and MET in double-disc-type furrow openers. These findings can help optimize residue management for improved efficiency in no-till farming systems.","PeriodicalId":505370,"journal":{"name":"AgriEngineering","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriengineering6020073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of the no-till seeder is one of the most important factors that affect the success of the no-tillage. Striking the right balance between furrow opener design and residue cover is essential for optimizing seeding conditions and ensuring sustainable agricultural practices that promote both soil conservation and high-yield crop production. This study investigates the impact of residue cover on no-tillage maize seeding after wheat harvest, focusing on plant spacing, seeding depth, mean emergence time, and percent emergence. Trials with hoe-type and double-disc-type furrow openers, accompanied by plain- or ripple-disc-type coulters, were conducted in Antalya, Turkey. The results indicate that residue cover had no significant effect on mean plant spacing, but a higher residue cover increased spacing variation. The seeding depth in hoe-type furrow opener trials remained consistent, while double-disc-type furrow openers showed lower depths with 80% and 90% residue covers. The percentage of plant emergence and mean emergence time decreased as the residue cover increased in double-disc-type furrow opener trials. At 90% residue cover, PE decreased to 60%. The impact of disc coulters on hoe-type furrow openers was limited, but they increased seeding depth and MET in double-disc-type furrow openers. These findings can help optimize residue management for improved efficiency in no-till farming systems.