Understanding COVID-19 propagation: a comprehensive mathematical model with Caputo fractional derivatives for Thailand

Shamil E, Sayooj Aby Jose, H. S. Panigoro, A. Jirawattanapanit, B. I. Omede, Z. Yaagoub
{"title":"Understanding COVID-19 propagation: a comprehensive mathematical model with Caputo fractional derivatives for Thailand","authors":"Shamil E, Sayooj Aby Jose, H. S. Panigoro, A. Jirawattanapanit, B. I. Omede, Z. Yaagoub","doi":"10.3389/fams.2024.1374721","DOIUrl":null,"url":null,"abstract":"This research introduces a sophisticated mathematical model for understanding the transmission dynamics of COVID-19, incorporating both integer and fractional derivatives. The model undergoes a rigorous analysis, examining equilibrium points, the reproduction number, and feasibility. The application of fixed point theory establishes the existence of a unique solution, demonstrating stability in the model. To derive approximate solutions, the generalized Adams-Bashforth-Moulton method is employed, further enhancing the study's analytical depth. Through a numerical simulation based on Thailand's data, the research delves into the intricacies of COVID-19 transmission, encompassing thorough data analysis and parameter estimation. The study advocates for a holistic approach, recommending a combined strategy of precautionary measures and home remedies, showcasing their substantial impact on pandemic mitigation. This comprehensive investigation significantly contributes to the broader understanding and effective management of the COVID-19 crisis, providing valuable insights for shaping public health strategies and guiding individual actions.","PeriodicalId":507585,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2024.1374721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research introduces a sophisticated mathematical model for understanding the transmission dynamics of COVID-19, incorporating both integer and fractional derivatives. The model undergoes a rigorous analysis, examining equilibrium points, the reproduction number, and feasibility. The application of fixed point theory establishes the existence of a unique solution, demonstrating stability in the model. To derive approximate solutions, the generalized Adams-Bashforth-Moulton method is employed, further enhancing the study's analytical depth. Through a numerical simulation based on Thailand's data, the research delves into the intricacies of COVID-19 transmission, encompassing thorough data analysis and parameter estimation. The study advocates for a holistic approach, recommending a combined strategy of precautionary measures and home remedies, showcasing their substantial impact on pandemic mitigation. This comprehensive investigation significantly contributes to the broader understanding and effective management of the COVID-19 crisis, providing valuable insights for shaping public health strategies and guiding individual actions.
了解 COVID-19 的传播:采用卡普托分数导数的泰国综合数学模型
这项研究引入了一个复杂的数学模型来了解 COVID-19 的传播动态,其中包含整数和分数导数。该模型经过了严格的分析,研究了平衡点、繁殖数和可行性。定点理论的应用确定了唯一解的存在,证明了模型的稳定性。为了得出近似解,采用了广义亚当斯-巴什福斯-穆尔顿方法,进一步提高了研究的分析深度。通过基于泰国数据的数值模拟,研究深入探讨了 COVID-19 传播的复杂性,包括全面的数据分析和参数估计。研究主张采用综合方法,建议采取预防措施和家庭疗法相结合的策略,展示其对缓解大流行的重大影响。这项全面的调查极大地促进了对 COVID-19 危机的广泛理解和有效管理,为制定公共卫生战略和指导个人行动提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信