Evidence of Kelvin-Helmholtz and tearing mode instabilities at the magnetopause during space weather events

L. Biasiotti, S. Ivanovski, Lorenzo Calderone, Giovanna Jerse, M. Laurenza, Dario Del Moro, Francesco Longo, C. Plainaki, M. F. Marcucci, A. Milillo, Marco Molinaro, Chiara Feruglio
{"title":"Evidence of Kelvin-Helmholtz and tearing mode instabilities at the magnetopause during space weather events","authors":"L. Biasiotti, S. Ivanovski, Lorenzo Calderone, Giovanna Jerse, M. Laurenza, Dario Del Moro, Francesco Longo, C. Plainaki, M. F. Marcucci, A. Milillo, Marco Molinaro, Chiara Feruglio","doi":"10.3389/fspas.2024.1395775","DOIUrl":null,"url":null,"abstract":"Introduction: Kelvin-Helmholtz (KH) and tearing mode (TM) instabilities are one of the most important mechanisms of solar wind energy, momentum and plasma transport within the magnetosphere.Methods: To investigate the conditions under which KHTM instabilities occur in the Earth environment it is fundamental to combine simultaneous multipoint in situ measurements and MHD simulations. We analyzed data from the THEMIS and Cluster spacecraft considering two Space Weather (SWE) events starting with an M2.0 flare event (hereafter Case-1) that occurred on 21 June 2015 and the most-intensive flare (X9.3) of solar cycle 24 that occurred on 6 September 2017 (hereafter Case-2).Results: Our analysis utilized a 2D MHD model for incompressible and viscous flow. The results from Case-1 indicate the presence of KH and TM instabilities, suggesting existence of observed low-amplitude oscillations at the nose of the magnetopause. However, the MHD simulations for Case-2 did not show any evidence of KH vortices, but did reveal the presence of “magnetic island” structures during a low-shear condition. The reconnection rate derived from the observations is compared with the computed one in the presence of developed instabilities inside the Earth’s magnetopause.","PeriodicalId":507437,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2024.1395775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Kelvin-Helmholtz (KH) and tearing mode (TM) instabilities are one of the most important mechanisms of solar wind energy, momentum and plasma transport within the magnetosphere.Methods: To investigate the conditions under which KHTM instabilities occur in the Earth environment it is fundamental to combine simultaneous multipoint in situ measurements and MHD simulations. We analyzed data from the THEMIS and Cluster spacecraft considering two Space Weather (SWE) events starting with an M2.0 flare event (hereafter Case-1) that occurred on 21 June 2015 and the most-intensive flare (X9.3) of solar cycle 24 that occurred on 6 September 2017 (hereafter Case-2).Results: Our analysis utilized a 2D MHD model for incompressible and viscous flow. The results from Case-1 indicate the presence of KH and TM instabilities, suggesting existence of observed low-amplitude oscillations at the nose of the magnetopause. However, the MHD simulations for Case-2 did not show any evidence of KH vortices, but did reveal the presence of “magnetic island” structures during a low-shear condition. The reconnection rate derived from the observations is compared with the computed one in the presence of developed instabilities inside the Earth’s magnetopause.
空间天气事件期间磁层顶开尔文-赫尔姆霍兹和撕裂模式不稳定性的证据
导言:开尔文-赫尔姆霍兹(KH)和撕裂模式(TM)不稳定性是磁层内太阳风能量、动量和等离子体传输的最重要机制之一:为了研究 KHTM 不稳定性在地球环境中发生的条件,必须将多点现场同步测量和 MHD 模拟结合起来。我们分析了来自THEMIS和Cluster航天器的数据,考虑了两个空间天气(SWE)事件,一个是2015年6月21日发生的M2.0耀斑事件(以下简称 "案例-1"),另一个是2017年9月6日发生的太阳周期24中强度最大的耀斑(X9.3)(以下简称 "案例-2"):我们的分析采用了不可压缩粘性流动的二维 MHD 模型。情况-1的结果表明存在KH和TM不稳定性,这表明在磁层顶端存在观测到的低振幅振荡。然而,案例 2 的 MHD 模拟没有显示任何 KH 涡旋的证据,但却显示了在低剪切条件下 "磁岛 "结构的存在。在地球磁层顶内部存在发达不稳定性的情况下,将观测得出的再连接率与计算得出的再连接率进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信