Beyond Dynamics: Learning to Discover Conservation Principles

Antonii Belyshev, Alexander Kovrigin, Andrey Ustyuzhanin
{"title":"Beyond Dynamics: Learning to Discover Conservation Principles","authors":"Antonii Belyshev, Alexander Kovrigin, Andrey Ustyuzhanin","doi":"10.1088/2632-2153/ad4a20","DOIUrl":null,"url":null,"abstract":"\n The discovery of conservation principles is crucial for understanding the fundamental behavior of both classical and quantum physical systems across numerous domains. This paper introduces an innovative method that merges representation learning and topological analysis to explore the topology of conservation law spaces. Notably, the robustness of our approach to noise makes it suitable for complex experimental setups and its aptitude extends to the analysis of quantum systems, as successfully demonstrated in our paper. We exemplify our method’s potential to unearth previously unknown conservation principles and endorse interdisciplinary research through a variety of physical simulations. In conclusion, this work emphasizes the significance of data-driven techniques in deepening our comprehension of the principles governing classical and quantum physical systems.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":" 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad4a20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The discovery of conservation principles is crucial for understanding the fundamental behavior of both classical and quantum physical systems across numerous domains. This paper introduces an innovative method that merges representation learning and topological analysis to explore the topology of conservation law spaces. Notably, the robustness of our approach to noise makes it suitable for complex experimental setups and its aptitude extends to the analysis of quantum systems, as successfully demonstrated in our paper. We exemplify our method’s potential to unearth previously unknown conservation principles and endorse interdisciplinary research through a variety of physical simulations. In conclusion, this work emphasizes the significance of data-driven techniques in deepening our comprehension of the principles governing classical and quantum physical systems.
超越动力学:学习发现水土保持原理
发现守恒原理对于理解众多领域中经典和量子物理系统的基本行为至关重要。本文介绍了一种融合表征学习和拓扑分析的创新方法,用于探索守恒定律空间的拓扑结构。值得注意的是,我们的方法对噪声的鲁棒性使其适用于复杂的实验设置,其适用范围也扩展到量子系统的分析,这在我们的论文中得到了成功的展示。我们举例说明了我们的方法具有挖掘以前未知守恒原理的潜力,并通过各种物理模拟支持跨学科研究。总之,这项工作强调了数据驱动技术在加深我们对经典和量子物理系统原理的理解方面的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信