Threshold Voltage Instability After Double Pulse Test Under Different OFF-State Drain Voltages and ON-State Drain Currents in p-GaN Gate AlGaN/GaN HEMT
{"title":"Threshold Voltage Instability After Double Pulse Test Under Different OFF-State Drain Voltages and ON-State Drain Currents in p-GaN Gate AlGaN/GaN HEMT","authors":"Chih-wei Chen, Hao-Hsuan Lo, Y. Hsin","doi":"10.1149/2162-8777/ad49d6","DOIUrl":null,"url":null,"abstract":"\n This study investigated threshold voltage (VTH) instability in a Schottky p-GaN gate AlGaN/GaN high-electron-mobility transistor (HEMT) by using the double pulse test (DPT) with a 1-µs pulse width in the ON-state and OFF-state. OFF-state drain biases (VDS,OFF) of 100–400 V and ON-state drain currents of ID,ON 1–16 A were applied in the DPT to observe the post-DPT VTH shift. The ON-state currents did not strongly influence the device's characteristics after the DPT. However, the OFF-state voltages, particularly VDS,OFF = 100 and 200 V, exerted notable effects. A TCAD simulation was conducted to investigate the mechanism underlying the VTH shift after the DPT at various VDS,OFF and ID,ON levels.","PeriodicalId":504734,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad49d6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated threshold voltage (VTH) instability in a Schottky p-GaN gate AlGaN/GaN high-electron-mobility transistor (HEMT) by using the double pulse test (DPT) with a 1-µs pulse width in the ON-state and OFF-state. OFF-state drain biases (VDS,OFF) of 100–400 V and ON-state drain currents of ID,ON 1–16 A were applied in the DPT to observe the post-DPT VTH shift. The ON-state currents did not strongly influence the device's characteristics after the DPT. However, the OFF-state voltages, particularly VDS,OFF = 100 and 200 V, exerted notable effects. A TCAD simulation was conducted to investigate the mechanism underlying the VTH shift after the DPT at various VDS,OFF and ID,ON levels.