Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald

Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, Huacheng Yu
{"title":"Simple & Optimal Quantile Sketch: Combining Greenwald-Khanna with Khanna-Greenwald","authors":"Elena Gribelyuk, Pachara Sawettamalya, Hongxun Wu, Huacheng Yu","doi":"10.1145/3651610","DOIUrl":null,"url":null,"abstract":"Estimating the ε-approximate quantiles or ranks of a stream is a fundamental task in data monitoring. Given a stream x_1,..., x_n from a universe \\mathcalU with total order, an additive-error quantile sketch \\mathcalM allows us to approximate the rank of any query y\\in \\mathcalU up to additive ε n error. In 2001, Greenwald and Khanna gave a deterministic algorithm (GK sketch) that solves the ε-approximate quantiles estimation problem using O(ε^-1 łog(ε n)) space \\citegreenwald2001space ; recently, this algorithm was shown to be optimal by Cormode and Vesleý in 2020 \\citecormode2020tight. However, due to the intricacy of the GK sketch and its analysis, over-simplified versions of the algorithm are implemented in practical applications, often without any known theoretical guarantees. In fact, it has remained an open question whether the GK sketch can be simplified while maintaining the optimal space bound. In this paper, we resolve this open question by giving a simplified deterministic algorithm that stores at most (2 + o(1))ε^-1 łog (ε n) elements and solves the additive-error quantile estimation problem; as a side benefit, our algorithm achieves a smaller constant factor than the \\frac11 2 ε^-1 łog(ε n) space bound in the original GK sketch~\\citegreenwald2001space. Our algorithm features an easier analysis and still achieves the same optimal asymptotic space complexity as the original GK sketch. Lastly, our simplification enables an efficient data structure implementation, with a worst-case runtime of O(łog(1/ε) + łog łog (ε n)) per-element for the ordinary ε-approximate quantile estimation problem. Also, for the related \"weighted'' quantile estimation problem, we give efficient data structures for our simplified algorithm which guarantee a worst-case per-element runtime of O(łog(1/ε) + łog łog (ε W_n/w_\\textrmmin )), achieving an improvement over the previous upper bound of \\citeassadi2023generalizing.","PeriodicalId":498157,"journal":{"name":"Proceedings of the ACM on Management of Data","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Management of Data","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1145/3651610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating the ε-approximate quantiles or ranks of a stream is a fundamental task in data monitoring. Given a stream x_1,..., x_n from a universe \mathcalU with total order, an additive-error quantile sketch \mathcalM allows us to approximate the rank of any query y\in \mathcalU up to additive ε n error. In 2001, Greenwald and Khanna gave a deterministic algorithm (GK sketch) that solves the ε-approximate quantiles estimation problem using O(ε^-1 łog(ε n)) space \citegreenwald2001space ; recently, this algorithm was shown to be optimal by Cormode and Vesleý in 2020 \citecormode2020tight. However, due to the intricacy of the GK sketch and its analysis, over-simplified versions of the algorithm are implemented in practical applications, often without any known theoretical guarantees. In fact, it has remained an open question whether the GK sketch can be simplified while maintaining the optimal space bound. In this paper, we resolve this open question by giving a simplified deterministic algorithm that stores at most (2 + o(1))ε^-1 łog (ε n) elements and solves the additive-error quantile estimation problem; as a side benefit, our algorithm achieves a smaller constant factor than the \frac11 2 ε^-1 łog(ε n) space bound in the original GK sketch~\citegreenwald2001space. Our algorithm features an easier analysis and still achieves the same optimal asymptotic space complexity as the original GK sketch. Lastly, our simplification enables an efficient data structure implementation, with a worst-case runtime of O(łog(1/ε) + łog łog (ε n)) per-element for the ordinary ε-approximate quantile estimation problem. Also, for the related "weighted'' quantile estimation problem, we give efficient data structures for our simplified algorithm which guarantee a worst-case per-element runtime of O(łog(1/ε) + łog łog (ε W_n/w_\textrmmin )), achieving an improvement over the previous upper bound of \citeassadi2023generalizing.
简单与最优量子草图:格林沃尔德-坎纳与坎纳-格林沃尔德的结合
估计数据流的ε-近似量值或等级是数据监测的一项基本任务。给定来自宇宙 \mathcalU 的具有总序的数据流 x_1,...,x_n,一个可加误差量值草图 \mathcalM 允许我们近似估计 \mathcalU 中任何查询的秩,误差不超过可加误差 ε n。2001 年,Greenwald 和 Khanna 给出了一个确定性算法(GK 草图),用 O(ε^-1 łog(ε n))空间 \citegreenwald2001space 解决了 ε-approximate quantiles 估计问题;最近,Cormode 和 Vesleý 在 2020 年证明了这个算法是最优的 \citecormode2020tight.然而,由于 GK 草图及其分析的复杂性,该算法的过度简化版本在实际应用中得以实现,但往往没有任何已知的理论保证。事实上,GK 草图能否在简化的同时保持最优空间约束一直是个悬而未决的问题。在本文中,我们通过给出一种简化的确定性算法来解决这个悬而未决的问题,该算法最多存储 (2 + o(1))ε^-1 łog (ε n) 个元素,并解决了加性误差量子估计问题;作为一个附带的好处,我们的算法比原始 GK 草图~\citegreenwald2001 空间中的\frac11 2 ε^-1 łog(ε n) 空间约束实现了更小的常数因子。我们的算法更易于分析,而且仍然能达到与原始 GK 草图相同的最优渐近空间复杂度。最后,我们的简化实现了高效的数据结构,对于普通的ε-近似量化估计问题,每元素的最坏运行时间为O(łog(1/ε) + łog łog (ε n))。此外,对于相关的 "加权''量化估计问题,我们给出了简化算法的高效数据结构,保证了最坏情况下的每元素运行时间为 O(łog(1/ε) + łog łog (ε W_n/w_\textrmmin )) ,比之前的 \citeassadi2023generalizing 上界有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信