Empirical examination of the Black–Scholes model: evidence from the United States stock market

Monsurat Foluke Salami
{"title":"Empirical examination of the Black–Scholes model: evidence from the United States stock market","authors":"Monsurat Foluke Salami","doi":"10.3389/fams.2024.1216386","DOIUrl":null,"url":null,"abstract":"Option pricing is crucial in enabling investors to hedge against risks. The Black–Scholes option pricing model is widely used for this purpose. This paper investigates whether the Black–Scholes model is a good indicator of option pricing in the United States stock market. We examine the relevance of the Black–Scholes model to certain stocks using paired sample t-test and Corrado and Miller’s approximation for the implied volatility. Empirical tests are applied to determine the significance of the relationship between the actual market values and the Black–Scholes model values. Paired sample t-tests are applied to 582 call options and 579 put options. The empirical test results show that there is no significant difference between the actual market premium value and the Black–Scholes model premium value for seven out of nine stocks considered for call options, and four out of nine stocks considered for put options. Thus, we conclude that the Black–Scholes option pricing model can be used to price call options but is not suitable for pricing put options in the United States stock market.","PeriodicalId":507585,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2024.1216386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Option pricing is crucial in enabling investors to hedge against risks. The Black–Scholes option pricing model is widely used for this purpose. This paper investigates whether the Black–Scholes model is a good indicator of option pricing in the United States stock market. We examine the relevance of the Black–Scholes model to certain stocks using paired sample t-test and Corrado and Miller’s approximation for the implied volatility. Empirical tests are applied to determine the significance of the relationship between the actual market values and the Black–Scholes model values. Paired sample t-tests are applied to 582 call options and 579 put options. The empirical test results show that there is no significant difference between the actual market premium value and the Black–Scholes model premium value for seven out of nine stocks considered for call options, and four out of nine stocks considered for put options. Thus, we conclude that the Black–Scholes option pricing model can be used to price call options but is not suitable for pricing put options in the United States stock market.
布莱克-斯科尔斯模型的实证研究:来自美国股市的证据
期权定价对投资者对冲风险至关重要。为此,布莱克-斯科尔斯期权定价模型被广泛使用。本文研究了布莱克-斯科尔斯模型是否是美国股市期权定价的良好指标。我们使用配对样本 t 检验和 Corrado 与 Miller 对隐含波动率的近似值来检验 Black-Scholes 模型与某些股票的相关性。通过实证检验来确定实际市场价值与 Black-Scholes 模型价值之间关系的重要性。对 582 份看涨期权和 579 份看跌期权进行了配对样本 t 检验。实证检验结果表明,在看涨期权所考虑的 9 只股票中,有 7 只股票的实际市场溢价值与 Black-Scholes 模型溢价值之间没有显著差异;在看跌期权所考虑的 9 只股票中,有 4 只股票的实际市场溢价值与 Black-Scholes 模型溢价值之间没有显著差异。因此,我们得出结论,布莱克-斯科尔斯期权定价模型可用来为看涨期权定价,但不适合为美国股市的看跌期权定价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信