Characterization of the least squares estimator: Mis-specified multivariate isotonic regression model with dependent errors

IF 0.4 Q4 STATISTICS & PROBABILITY
Pramita Bagchi, Subhra Dhar
{"title":"Characterization of the least squares estimator: Mis-specified multivariate isotonic regression model with dependent errors","authors":"Pramita Bagchi, Subhra Dhar","doi":"10.1090/tpms/1210","DOIUrl":null,"url":null,"abstract":"This article investigates some nice properties of the least squares estimator of multivariate isotonic regression function (denoted as LSEMIR), when the model is mis-specified, and the errors are \n\n \n β\n \\beta\n \n\n-mixing stationary random variables. Under mild conditions, it is observed that the least squares estimator converges uniformly to a certain monotone function, which is closest to the original function in an appropriate sense.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates some nice properties of the least squares estimator of multivariate isotonic regression function (denoted as LSEMIR), when the model is mis-specified, and the errors are β \beta -mixing stationary random variables. Under mild conditions, it is observed that the least squares estimator converges uniformly to a certain monotone function, which is closest to the original function in an appropriate sense.
最小二乘估计器的特征:带有因果误差的多变量同调回归模型的错误定义
本文研究了多元等调回归函数(记为 LSEMIR)的最小二乘估计器在模型被错误指定、误差为 β \beta 混合静态随机变量时的一些良好性质。在温和的条件下,可以观察到最小二乘估计器均匀地收敛于某个单调函数,在适当的意义上最接近原始函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信