Parameter Estimation in Spatial Autoregressive Models with Missing Data and Measurement Errors

Axioms Pub Date : 2024-05-10 DOI:10.3390/axioms13050315
Tengjun Li, Zhikang Zhang, Yunquan Song
{"title":"Parameter Estimation in Spatial Autoregressive Models with Missing Data and Measurement Errors","authors":"Tengjun Li, Zhikang Zhang, Yunquan Song","doi":"10.3390/axioms13050315","DOIUrl":null,"url":null,"abstract":"This study addresses the problem of parameter estimation in spatial autoregressive models with missing data and measurement errors in covariates. Specifically, a corrected likelihood estimation approach is employed to rectify the bias in the log-maximum likelihood function induced by measurement errors. Additionally, a combination of inverse probability weighting (IPW) and mean imputation is utilized to mitigate the bias caused by missing data. Under several mild conditions, it is demonstrated that the proposed estimators are consistent and possess oracle properties. The efficacy of the proposed parameter estimation process is assessed through Monte Carlo simulation studies. Finally, the applicability of the proposed method is further substantiated using the Boston Housing Dataset.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":" 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13050315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the problem of parameter estimation in spatial autoregressive models with missing data and measurement errors in covariates. Specifically, a corrected likelihood estimation approach is employed to rectify the bias in the log-maximum likelihood function induced by measurement errors. Additionally, a combination of inverse probability weighting (IPW) and mean imputation is utilized to mitigate the bias caused by missing data. Under several mild conditions, it is demonstrated that the proposed estimators are consistent and possess oracle properties. The efficacy of the proposed parameter estimation process is assessed through Monte Carlo simulation studies. Finally, the applicability of the proposed method is further substantiated using the Boston Housing Dataset.
有缺失数据和测量误差的空间自回归模型的参数估计
本研究解决了协变量中存在数据缺失和测量误差的空间自回归模型的参数估计问题。具体来说,采用了一种校正似然估计方法来纠正测量误差引起的对数最大似然函数偏差。此外,还采用了反概率加权(IPW)和平均估算相结合的方法来减轻缺失数据造成的偏差。在几种温和的条件下,证明了所提出的估计器是一致的,并具有甲骨文特性。通过蒙特卡罗模拟研究评估了所提出的参数估计过程的有效性。最后,利用波士顿住房数据集进一步证实了所提方法的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信