Estimating Agent Skill in Continuous Action Domains

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Christopher Archibald, Delma Nieves-Rivera
{"title":"Estimating Agent Skill in Continuous Action Domains","authors":"Christopher Archibald, Delma Nieves-Rivera","doi":"10.1613/jair.1.15326","DOIUrl":null,"url":null,"abstract":"Actions in most real-world continuous domains cannot be executed exactly. An agent’s performance in these domains is influenced by two critical factors: the ability to select effective actions (decision-making skill), and how precisely it can execute those selected actions (execution skill). This article addresses the problem of estimating the execution and decision-making skill of an agent, given observations. Several execution skill estimation methods are presented, each of which utilize different information from the observations and make assumptions about the agent’s decision-making ability. A final novel method forgoes these assumptions about decision-making and instead estimates the execution and decision-making skills simultaneously under a single Bayesian framework. Experimental results in several domains evaluate the estimation accuracy of the estimators, especially focusing on how robust they are as agents and their decision-making methods are varied. These results demonstrate that reasoning about both types of skill together significantly improves the robustness and accuracy of execution skill estimation. A case study is presented using the proposed methods to estimate the skill of Major League Baseball pitchers, demonstrating how these methods can be applied to real-world data sources.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.15326","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Actions in most real-world continuous domains cannot be executed exactly. An agent’s performance in these domains is influenced by two critical factors: the ability to select effective actions (decision-making skill), and how precisely it can execute those selected actions (execution skill). This article addresses the problem of estimating the execution and decision-making skill of an agent, given observations. Several execution skill estimation methods are presented, each of which utilize different information from the observations and make assumptions about the agent’s decision-making ability. A final novel method forgoes these assumptions about decision-making and instead estimates the execution and decision-making skills simultaneously under a single Bayesian framework. Experimental results in several domains evaluate the estimation accuracy of the estimators, especially focusing on how robust they are as agents and their decision-making methods are varied. These results demonstrate that reasoning about both types of skill together significantly improves the robustness and accuracy of execution skill estimation. A case study is presented using the proposed methods to estimate the skill of Major League Baseball pitchers, demonstrating how these methods can be applied to real-world data sources.
估计连续行动领域中的代理技能
现实世界中大多数连续领域的行动都无法精确执行。代理在这些领域中的表现受到两个关键因素的影响:选择有效行动的能力(决策技能)和如何精确执行这些选定的行动(执行技能)。本文讨论的问题是根据观察结果估算代理的执行和决策技能。文章介绍了几种执行技能估算方法,每种方法都利用了观察到的不同信息,并对代理的决策能力做出了假设。最后一种新方法放弃了这些决策假设,而是在单一贝叶斯框架下同时估算执行和决策技能。在多个领域的实验结果评估了估算器的估算精度,尤其关注了估算器在代理及其决策方法发生变化时的稳健性。这些结果表明,同时推理两种类型的技能可显著提高执行技能估算的稳健性和准确性。本文还介绍了一个案例研究,使用所提出的方法来估算美国职业棒球大联盟投手的技能,展示了如何将这些方法应用到现实世界的数据源中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Artificial Intelligence Research
Journal of Artificial Intelligence Research 工程技术-计算机:人工智能
CiteScore
9.60
自引率
4.00%
发文量
98
审稿时长
4 months
期刊介绍: JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信