{"title":"Towards Integration of IndoorGML and GDF for Robot Navigation in Warehouses","authors":"Ziwei Xiang, Kunlin Yu, Zhiyong Wang","doi":"10.5194/isprs-archives-xlviii-1-2024-737-2024","DOIUrl":null,"url":null,"abstract":"Abstract. With the development of the navigation technology, the outdoor navigation has made great progress, whereas the indoor navigation has some areas which is underdeveloped, insufficient to meet the rapidly increasing demands of people as well as the robotics. Even though, the advance in indoor navigation technology still has really brought a wide range of applications and a broad market, for instance, the flourishing intelligent warehouse system utilizes multi-robot operation which have the certain requirement for an accurate indoor navigation system. As for the indoor navigation, the OGC standard IndoorGML has been released and undergoing revision constantly. While the document really provides more advantageous support for the applications of Indoor Location-Based Services (LBS), in some aspects, especially the door-to-door navigation and the warehouse environment, it is not sufficiently adaptable, with still some room for improvement. IndoorGML is powerful for the common indoor scenarios like malls and offices, while as for carefully-arranged warehouse environment and other large-scale operation scenarios with multi-robots that is more similar to an ordered system, it is obviously insufficient. In this paper, we discuss about the potential to combination of IndoorGML and ITS standard ISO 20524 (GDF5.1), and extend the OGC standard indoorGML. We analyze the definition as well as function of related concepts, making some comparisons between these two standards. We conclude that these two standards are well-matched with vital potential to merge and unify the indoor and outdoor systems for spatial information.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 671","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-2024-737-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. With the development of the navigation technology, the outdoor navigation has made great progress, whereas the indoor navigation has some areas which is underdeveloped, insufficient to meet the rapidly increasing demands of people as well as the robotics. Even though, the advance in indoor navigation technology still has really brought a wide range of applications and a broad market, for instance, the flourishing intelligent warehouse system utilizes multi-robot operation which have the certain requirement for an accurate indoor navigation system. As for the indoor navigation, the OGC standard IndoorGML has been released and undergoing revision constantly. While the document really provides more advantageous support for the applications of Indoor Location-Based Services (LBS), in some aspects, especially the door-to-door navigation and the warehouse environment, it is not sufficiently adaptable, with still some room for improvement. IndoorGML is powerful for the common indoor scenarios like malls and offices, while as for carefully-arranged warehouse environment and other large-scale operation scenarios with multi-robots that is more similar to an ordered system, it is obviously insufficient. In this paper, we discuss about the potential to combination of IndoorGML and ITS standard ISO 20524 (GDF5.1), and extend the OGC standard indoorGML. We analyze the definition as well as function of related concepts, making some comparisons between these two standards. We conclude that these two standards are well-matched with vital potential to merge and unify the indoor and outdoor systems for spatial information.