Neural Cellular Automata-based Land Use Changes Simulation

Jinian Zhang, Lanfa Liu
{"title":"Neural Cellular Automata-based Land Use Changes Simulation","authors":"Jinian Zhang, Lanfa Liu","doi":"10.5194/isprs-archives-xlviii-1-2024-843-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Simulating land use and land cover changes (LUCC) is important for urban planning and environmental studies. In this study, we introduce a neural cellular automata (NCA) model that integrates biological principles and convolutional neural networks (CNNs) for land use simulation. We conduct experiments in the city of Wuhan, China. The NCA model achieved the highest performance with an OA of 0.858, F1 score of 0.753, Kappa coefficient of 0.799, and FOM of 0.427. Comparisons of land use data of Wuhan city from 2000 and 2010 with the simulated optimal results indicate that forest areas closer to urban centers are more susceptible to modernization processes, showing the advantage of NCA in accurately simulating land use changes in the central urban area.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 1152","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-1-2024-843-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Simulating land use and land cover changes (LUCC) is important for urban planning and environmental studies. In this study, we introduce a neural cellular automata (NCA) model that integrates biological principles and convolutional neural networks (CNNs) for land use simulation. We conduct experiments in the city of Wuhan, China. The NCA model achieved the highest performance with an OA of 0.858, F1 score of 0.753, Kappa coefficient of 0.799, and FOM of 0.427. Comparisons of land use data of Wuhan city from 2000 and 2010 with the simulated optimal results indicate that forest areas closer to urban centers are more susceptible to modernization processes, showing the advantage of NCA in accurately simulating land use changes in the central urban area.
基于神经细胞自动机的土地利用变化模拟
摘要模拟土地利用和土地覆被变化(LUCC)对于城市规划和环境研究非常重要。在本研究中,我们介绍了一种神经细胞自动机(NCA)模型,该模型将生物学原理与卷积神经网络(CNN)相结合,用于土地利用模拟。我们在中国武汉市进行了实验。NCA 模型取得了最高的性能,OA 为 0.858,F1 得分为 0.753,Kappa 系数为 0.799,FOM 为 0.427。将武汉市 2000 年和 2010 年的土地利用数据与模拟的最优结果进行比较后发现,靠近城市中心的林区更容易受到现代化进程的影响,这表明了 NCA 在准确模拟中心城区土地利用变化方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信