Joint prediction method for strip thickness and flatness in hot strip rolling process: A combined multi-indicator Transformer with embedded sliding window
{"title":"Joint prediction method for strip thickness and flatness in hot strip rolling process: A combined multi-indicator Transformer with embedded sliding window","authors":"Qingquan Xu, Jie Dong, Kai-xiang Peng","doi":"10.1177/09544054241249221","DOIUrl":null,"url":null,"abstract":"Thickness and flatness are important quality indicators for strip. It is important that the rapid and accurate prediction of the exit thickness and flatness for the optimal control of the hot strip rolling process. Due to the fast and long rolling process, there are time delays, non-linearity and strong coupling among the variables, which cause difficulties in the establishment of prediction models. In this paper, the variables related to thickness and flatness are selected by analyzing the rolling process mechanism and data. Based on the data related to the rolling quality, a rolling exit thickness and flatness joint prediction model combined multi-indicator Transformer with embedded sliding window (SW-MTrans) is proposed. First, a sliding window is embedded into the input layer of the model in order to address the effect of the time delay among variables. Then a Transformer network is improved to achieve accurate prediction of thickness and flatness simultaneously. It is verified that the proposed method can predict the thickness and flatness at the same time with higher prediction accuracy and generalization ability compared with other methods through actual production data. The mean absolute error (MAE) for thickness prediction was reduced by 19.37% and MAE for flatness prediction was reduced by 14.03% compared to the existing prediction model.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241249221","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Thickness and flatness are important quality indicators for strip. It is important that the rapid and accurate prediction of the exit thickness and flatness for the optimal control of the hot strip rolling process. Due to the fast and long rolling process, there are time delays, non-linearity and strong coupling among the variables, which cause difficulties in the establishment of prediction models. In this paper, the variables related to thickness and flatness are selected by analyzing the rolling process mechanism and data. Based on the data related to the rolling quality, a rolling exit thickness and flatness joint prediction model combined multi-indicator Transformer with embedded sliding window (SW-MTrans) is proposed. First, a sliding window is embedded into the input layer of the model in order to address the effect of the time delay among variables. Then a Transformer network is improved to achieve accurate prediction of thickness and flatness simultaneously. It is verified that the proposed method can predict the thickness and flatness at the same time with higher prediction accuracy and generalization ability compared with other methods through actual production data. The mean absolute error (MAE) for thickness prediction was reduced by 19.37% and MAE for flatness prediction was reduced by 14.03% compared to the existing prediction model.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.