Generation of Virtual Ground Control Points Using a Binocular Camera

Drones Pub Date : 2024-05-12 DOI:10.3390/drones8050195
Ariel Vazquez-Dominguez, A. Magadán-Salazar, R. Pinto-Elías, J. Fuentes-Pacheco, Máximo López-Sánchez, Hernán Abaunza-González
{"title":"Generation of Virtual Ground Control Points Using a Binocular Camera","authors":"Ariel Vazquez-Dominguez, A. Magadán-Salazar, R. Pinto-Elías, J. Fuentes-Pacheco, Máximo López-Sánchez, Hernán Abaunza-González","doi":"10.3390/drones8050195","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology for generating virtual ground control points (VGCPs) using a binocular camera mounted on a drone. We compare the measurements of the binocular and monocular cameras between the classical method and the proposed one. This work aims to decrease human processing times while maintaining a reduced root mean square error (RMSE) for 3D reconstruction. Additionally, we propose utilizing COLMAP to enhance reconstruction accuracy by solely utilizing a sparse point cloud. The results demonstrate that implementing COLMAP for pre-processing reduces the RMSE by up to 16.9% in most cases. We prove that VGCPs further reduce the RMSE by up to 61.08%.","PeriodicalId":507567,"journal":{"name":"Drones","volume":"105 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones8050195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a methodology for generating virtual ground control points (VGCPs) using a binocular camera mounted on a drone. We compare the measurements of the binocular and monocular cameras between the classical method and the proposed one. This work aims to decrease human processing times while maintaining a reduced root mean square error (RMSE) for 3D reconstruction. Additionally, we propose utilizing COLMAP to enhance reconstruction accuracy by solely utilizing a sparse point cloud. The results demonstrate that implementing COLMAP for pre-processing reduces the RMSE by up to 16.9% in most cases. We prove that VGCPs further reduce the RMSE by up to 61.08%.
使用双目摄像头生成虚拟地面控制点
本文介绍了一种利用安装在无人机上的双目摄像头生成虚拟地面控制点(VGCP)的方法。我们比较了经典方法和建议方法中双目和单目相机的测量结果。这项工作旨在减少人工处理时间,同时降低三维重建的均方根误差(RMSE)。此外,我们还建议利用 COLMAP,通过仅使用稀疏点云来提高重建精度。结果表明,在大多数情况下,使用 COLMAP 进行预处理最多可将 RMSE 降低 16.9%。我们证明,VGCP 可进一步降低 RMSE,最高可达 61.08%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信