InsightNet : Structured Insight Mining from Customer Feedback

Sandeep Sricharan Mukku, Manan Soni, Chetan Aggarwal, Jitenkumar Rana, Promod Yenigalla, Rashmi Patange, Shyam Mohan
{"title":"InsightNet : Structured Insight Mining from Customer Feedback","authors":"Sandeep Sricharan Mukku, Manan Soni, Chetan Aggarwal, Jitenkumar Rana, Promod Yenigalla, Rashmi Patange, Shyam Mohan","doi":"10.18653/v1/2023.emnlp-industry.53","DOIUrl":null,"url":null,"abstract":"We propose InsightNet, a novel approach for the automated extraction of structured insights from customer reviews. Our end-to-end machine learning framework is designed to overcome the limitations of current solutions, including the absence of structure for identified topics, non-standard aspect names, and lack of abundant training data. The proposed solution builds a semi-supervised multi-level taxonomy from raw reviews, a semantic similarity heuristic approach to generate labelled data and employs a multi-task insight extraction architecture by fine-tuning an LLM. InsightNet identifies granular actionable topics with customer sentiments and verbatim for each topic. Evaluations on real-world customer review data show that InsightNet performs better than existing solutions in terms of structure, hierarchy and completeness. We empirically demonstrate that InsightNet outperforms the current state-of-the-art methods in multi-label topic classification, achieving an F1 score of 0.85, which is an improvement of 11% F1-score over the previous best results. Additionally, InsightNet generalises well for unseen aspects and suggests new topics to be added to the taxonomy.","PeriodicalId":505350,"journal":{"name":"Conference on Empirical Methods in Natural Language Processing","volume":"114 43","pages":"552-566"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Empirical Methods in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.emnlp-industry.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose InsightNet, a novel approach for the automated extraction of structured insights from customer reviews. Our end-to-end machine learning framework is designed to overcome the limitations of current solutions, including the absence of structure for identified topics, non-standard aspect names, and lack of abundant training data. The proposed solution builds a semi-supervised multi-level taxonomy from raw reviews, a semantic similarity heuristic approach to generate labelled data and employs a multi-task insight extraction architecture by fine-tuning an LLM. InsightNet identifies granular actionable topics with customer sentiments and verbatim for each topic. Evaluations on real-world customer review data show that InsightNet performs better than existing solutions in terms of structure, hierarchy and completeness. We empirically demonstrate that InsightNet outperforms the current state-of-the-art methods in multi-label topic classification, achieving an F1 score of 0.85, which is an improvement of 11% F1-score over the previous best results. Additionally, InsightNet generalises well for unseen aspects and suggests new topics to be added to the taxonomy.
InsightNet:从客户反馈中挖掘结构化洞察力
我们提出的 InsightNet 是一种从客户评论中自动提取结构化见解的新方法。我们的端到端机器学习框架旨在克服当前解决方案的局限性,包括缺乏已识别主题的结构、非标准方面名称以及缺乏丰富的训练数据。所提出的解决方案从原始评论中建立了一个半监督的多级分类法,采用语义相似性启发式方法生成标记数据,并通过微调 LLM 采用多任务洞察力提取架构。InsightNet 可识别细粒度的可操作主题,每个主题都包含客户情感和逐字记录。对真实客户评论数据的评估表明,InsightNet 在结构、层次和完整性方面都优于现有解决方案。我们通过经验证明,InsightNet 在多标签主题分类方面的表现优于目前最先进的方法,F1 分数达到 0.85,比之前的最佳结果提高了 11%。此外,InsightNet 还能很好地泛化未见内容,并建议将新主题添加到分类法中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信