{"title":"Small Solid-Model Rocket Design and Soft Landing Trajectory Planning","authors":"Nuo Chen, Shang Liu, Xiang Zhou, Hong-bo Zhang","doi":"10.2514/1.a35919","DOIUrl":null,"url":null,"abstract":"A recoverable rocket is one of the keys to reusable launch technology. Currently, most recoverable rockets are powered by liquid engines, which are costly and complex compared to solid engines. In this paper, we perform soft landing trajectory planning for the designed solid rocket. First, a small model rocket equipped with a landing engine is innovatively designed. Second, a six-degree-of-freedom motion model of the rocket is established, and a minimum-landing-error problem is formed based on the landing engine. Third, successive convexification algorithm is applied to solve it. In the algorithm, a method of quaternion constraint correction is proposed to avoid the infeasibility of the problem. Lastly, the correctness and robustness of the algorithm are verified via three simulations. The possibility of rapid trajectory generation is verified by code optimization on a high-performance digital signal processor.","PeriodicalId":508266,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"21 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.a35919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A recoverable rocket is one of the keys to reusable launch technology. Currently, most recoverable rockets are powered by liquid engines, which are costly and complex compared to solid engines. In this paper, we perform soft landing trajectory planning for the designed solid rocket. First, a small model rocket equipped with a landing engine is innovatively designed. Second, a six-degree-of-freedom motion model of the rocket is established, and a minimum-landing-error problem is formed based on the landing engine. Third, successive convexification algorithm is applied to solve it. In the algorithm, a method of quaternion constraint correction is proposed to avoid the infeasibility of the problem. Lastly, the correctness and robustness of the algorithm are verified via three simulations. The possibility of rapid trajectory generation is verified by code optimization on a high-performance digital signal processor.