Robust Recursive Least-Squares Fixed-Point Smoother and Filter using Covariance Information in Linear Continuous-Time Stochastic Systems with Uncertainties

S. Nakamori
{"title":"Robust Recursive Least-Squares Fixed-Point Smoother and Filter using Covariance Information in Linear Continuous-Time Stochastic Systems with Uncertainties","authors":"S. Nakamori","doi":"10.37394/232014.2024.20.2","DOIUrl":null,"url":null,"abstract":"This study develops robust recursive least-squares (RLS) fixed-point smoothing and filtering algorithms for signals in linear continuous-time stochastic systems with uncertainties. The algorithms use covariance information, such as the cross-covariance function of the signal with the observed value and the autocovariance function of the degraded signal. A finite Fourier cosine series expansion approximates these functions. Additive white Gaussian noise is present in the observation of the degraded signal. A numerical simulation compares the estimation accuracy of the proposed robust RLS filter with the robust RLS Wiener filter, showing similar mean square values (MSVs) of the filtering errors. The MSVs of the proposed robust RLS fixed-point smoother are also compared to those of the proposed robust RLS filter.","PeriodicalId":305800,"journal":{"name":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","volume":"13 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232014.2024.20.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study develops robust recursive least-squares (RLS) fixed-point smoothing and filtering algorithms for signals in linear continuous-time stochastic systems with uncertainties. The algorithms use covariance information, such as the cross-covariance function of the signal with the observed value and the autocovariance function of the degraded signal. A finite Fourier cosine series expansion approximates these functions. Additive white Gaussian noise is present in the observation of the degraded signal. A numerical simulation compares the estimation accuracy of the proposed robust RLS filter with the robust RLS Wiener filter, showing similar mean square values (MSVs) of the filtering errors. The MSVs of the proposed robust RLS fixed-point smoother are also compared to those of the proposed robust RLS filter.
在具有不确定性的线性连续时间随机系统中使用协方差信息的鲁棒递归最小二乘定点平滑器和滤波器
本研究针对具有不确定性的线性连续时间随机系统中的信号,开发了鲁棒递归最小二乘(RLS)定点平滑和滤波算法。这些算法使用协方差信息,如信号与观测值的交叉协方差函数和降级信号的自协方差函数。有限傅里叶余弦级数展开近似这些函数。退化信号的观测值中存在加性白高斯噪声。数值模拟比较了所提出的鲁棒 RLS 滤波器和鲁棒 RLS 维纳滤波器的估计精度,结果显示滤波误差的均方值(MSV)相似。此外,还比较了建议的鲁棒 RLS 定点平滑器与建议的鲁棒 RLS 滤波器的均方值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信