Revolutionizing Content Digestion: Unleashing the Power of Bidirectional and Auto-Regressive Transformers in AI-Powered Automatic Text Summarization

Ms. Vaishali V. Jikar, Dr.Gurudev B. Sawarkar, Ms. Rupali Dasarkar, Ms. Minakshi Dobale
{"title":"Revolutionizing Content Digestion: Unleashing the Power of Bidirectional and Auto-Regressive Transformers in AI-Powered Automatic Text Summarization","authors":"Ms. Vaishali V. Jikar, Dr.Gurudev B. Sawarkar, Ms. Rupali Dasarkar, Ms. Minakshi Dobale","doi":"10.36948/ijfmr.2024.v06i03.19417","DOIUrl":null,"url":null,"abstract":"Automatic text summarization has become increasingly essential in managing the overwhelming volume of textual information available across various domains. This paper explores the role of bidirectional and auto-regressive transformers, two prominent paradigms in natural language processing (NLP), in revolutionizing content digestion through AI-powered automatic text summarization. We discuss how bidirectional transformers, exemplified by models like BERT, and auto-regressive transformers, such as GPT, capture context and generate output tokens sequentially, respectively, contributing to the production of accurate and coherent summaries. By providing an overview of the challenges posed by the vast volume of textual data and the significance of automatic summarization, we delve into key advancements in NLP, emphasizing the development and applications of bidirectional and auto-regressive transformers in text summarization. Furthermore, we survey state-of-the-art models like BART and its derivatives, highlighting their convergence of bidirectional and auto-regressive techniques. Through a comprehensive analysis, we elucidate the transformative potential of bidirectional and auto-regressive transformers, offering valuable insights for researchers and practitioners in content digestion and NLP-driven knowledge extraction.","PeriodicalId":391859,"journal":{"name":"International Journal For Multidisciplinary Research","volume":"100 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal For Multidisciplinary Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36948/ijfmr.2024.v06i03.19417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic text summarization has become increasingly essential in managing the overwhelming volume of textual information available across various domains. This paper explores the role of bidirectional and auto-regressive transformers, two prominent paradigms in natural language processing (NLP), in revolutionizing content digestion through AI-powered automatic text summarization. We discuss how bidirectional transformers, exemplified by models like BERT, and auto-regressive transformers, such as GPT, capture context and generate output tokens sequentially, respectively, contributing to the production of accurate and coherent summaries. By providing an overview of the challenges posed by the vast volume of textual data and the significance of automatic summarization, we delve into key advancements in NLP, emphasizing the development and applications of bidirectional and auto-regressive transformers in text summarization. Furthermore, we survey state-of-the-art models like BART and its derivatives, highlighting their convergence of bidirectional and auto-regressive techniques. Through a comprehensive analysis, we elucidate the transformative potential of bidirectional and auto-regressive transformers, offering valuable insights for researchers and practitioners in content digestion and NLP-driven knowledge extraction.
内容消化的革命性变革:在人工智能驱动的自动文本摘要中释放双向和自动回归变换器的力量
在管理各领域大量文本信息的过程中,自动文本摘要变得越来越重要。本文探讨了双向变换器和自动回归变换器这两种自然语言处理(NLP)中的著名范式在通过人工智能驱动的自动文本摘要来彻底改变内容消化方面的作用。我们讨论了双向变换器(以 BERT 等模型为例)和自动回归变换器(以 GPT 为例)如何分别捕捉上下文并按顺序生成输出标记,从而帮助生成准确、连贯的摘要。通过概述海量文本数据带来的挑战和自动摘要的意义,我们深入探讨了 NLP 的主要进展,重点介绍了双向转换器和自动回归转换器在文本摘要中的开发和应用。此外,我们还考察了最先进的模型,如 BART 及其衍生模型,强调了它们与双向和自动回归技术的融合。通过全面分析,我们阐明了双向和自动回归变换器的变革潜力,为内容消化和 NLP 驱动的知识提取领域的研究人员和从业人员提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信